
MODSECURITY
HANDBOOK
The Complete Guide to the Popular
Open Source Web Application Firewall

Ivan Ristiæ

Development Version

Last update: Sat Mar 24 11:20:45 GMT 2012

ModSecurity Handbook
Ivan Ristić

Property of Girish Motwani <kushalbooks@yahoo.co.in>

https://www.feistyduck.com

ModSecurity Handbook
by Ivan Ristić

Copyright © 2010-2012 Feisty Duck Limited. All rights reserved.

ISBN: 978-1-907117-02-2

Development version (revision 494).

First published in March 2010. Fully revised in March 2012.

Feisty Duck Limited
www.feistyduck.com
contact@feistyduck.com

Address:
6 Acantha Court
Montpelier Road
London W5 2QP
United Kingdom

Production editor: Jelena Girić-Ristić

Copyeditor: Nancy Kotary

Cover designer: Peter Jovanović

Cover illustration: Maja Veselinović

Interior designer: Ivan Ristić

Technical reviewer: Brian Rectanus

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, without the prior permission in writing of the publisher.

The author and publisher have taken care in preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

ModSecurity is a registered trademark of Trustwave Holdings, Inc. All other trademarks and copyrights are the property of their
respective owners.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

iii

Table of Contents
Preface . xix

Scope and Audience xix
Contents xx
Updates xxiii
Feedback xxiii
About the Author xxiii
About the Technical Reviewer xxiv
Acknowledgments xxiv

I. User Guide 1
1. Introduction . 3

Brief History of ModSecurity 3
What Can ModSecurity Do? 4

Guiding Principles 7
Deployment Options 7
Is Anything Missing? 8

Getting Started 9
Hybrid Nature of ModSecurity 9
Main Areas of Functionality 10
What Rules Look Like 11
Transaction Lifecycle 11
Impact on Web Server 16
What Next? 17

Resources 18
General Resources 19
Developer Resources 20
AuditConsole 21

Summary 21
2. Installation . 23

Installation from Source 24

Property of Girish Motwani <kushalbooks@yahoo.co.in>

iv

Downloading Releases 24
Downloading from Repository 25
Installation on Unix 27

Installation from Binaries 30
Fedora Core, CentOS, and Red Hat Enterprise Linux 30
Debian and Ubuntu 31

Installation on Windows 31
Summary 32

3. Configuration . 33
Folder Locations 34
Configuration Layout 36
Adding ModSecurity to Apache 37
Powering Up 38
Request Body Handling 38
Response Body Handling 40
Filesystem Locations 42
File Uploads 42
Debug Log 43
Audit Log 44
Miscellaneous Options 44
Default Rule Match Policy 45
Handling Processing Errors 45
Verifying Installation 47
Summary 48

4. Logging . 49
Debug Log 49

Debugging in Production 50
Audit Log 52

Audit Log Entry Example 53
Concurrent Audit Log 55

Remote Logging 56
Configuring Remote Logging 57
Activating Remote Logging 59
Troubleshooting Remote Logging 60

File Upload Interception 62
Storing Files 62
Inspecting Files 63
Integrating with ClamAV 64

Advanced Logging Configuration 66

Property of Girish Motwani <kushalbooks@yahoo.co.in>

v

Increasing Logging from a Rule 66
Dynamically Altering Logging Configuration 67
Removing Sensitive Data from Audit Logs 67
Selective Audit Logging 68

Summary 69
5. Rule Language Overview . 71

Anatomy of a Rule 71
Variables 72

Request Variables 73
Server Variables 74
Response Variables 75
Miscellaneous Variables 75
Parsing Flags 76
Collections 77
Time Variables 77

Operators 77
String Matching Operators 78
Numerical Operators 78
Validation Operators 79
Miscellaneous Operators 79

Actions 80
Disruptive Actions 80
Flow Actions 80
Metadata Actions 81
Variable Actions 81
Logging Actions 82
Special Actions 82
Miscellaneous Actions 82

Summary 83
6. Rule Language Tutorial . 85

Introducing Rules 85
Working with Variables 86
Combining Rules into Chains 87
Operator Negation 87
Variable Counting 87
Using Actions 88

Understanding Action Defaults 88
Actions in Chained Rules 90
Unconditional Rules 91

Property of Girish Motwani <kushalbooks@yahoo.co.in>

vi

Using Transformation Functions 91
Blocking 92
Changing Rule Flow 93

Smarter Skipping 94
If-Then-Else 95

Controlling Logging 95
Capturing Data 96
Variable Manipulation 97
Variable Expansion 98
Recording Data in Alerts 99
Adding Metadata 100
Embedded vs. Reverse Proxy Mode 102
Summary 103

7. Rule Configuration . 105
Apache Configuration Syntax 105

Breaking Lines 106
Directives and Parameters 106
Spreading Configuration Across Files 107
Container Directives 108
Configuration Contexts 109
Configuration Merging 110

Configuration and Rule Inheritance 111
Configuration Inheritance 111
Rule Inheritance 112
Location-Specific Configuration Restrictions 113
SecDefaultAction Inheritance Anomaly 113

Rule Manipulation 114
Removing Rules at Configure Time 114
Updating Rule Actions at Configure Time 115
Updating Rule Targets at Configure Time 116
Removing Rules at Runtime 116
Updating Rule Targets at Runtime 116

Configuration Tips 117
Summary 117

8. Persistent Storage . 119
Manipulating Collection Records 120

Creating Records 120
Application Namespaces 121
Initializing Records 122

Property of Girish Motwani <kushalbooks@yahoo.co.in>

vii

Controlling Record Longevity 122
Deleting Records 123
Detecting Very Old Records 124

Collection Variables 125
Built-in Variables 125
Variable Expiry 126
Variable Value Depreciation 126

Implementation Details 127
Retrieving Records 128
Storing a Collection 128
Record Limits 130

Applied Persistence 131
Periodic Alerting 131
Denial of Service Attack Detection 134
Brute Force Attack Detection 136

Session Management 138
Initializing Sessions 138
Blocking Sessions 140
Forcing Session Regeneration 140
Restricting Session Lifetime 141
Detecting Session Hijacking 144

User Management 145
Detecting User Sign-In 146
Detecting User Sign-Out 146

Summary 147
9. Practical Rule Writing . 149

Whitelisting 149
Whitelisting Theory 149
Whitelisting Mechanics 150
Granular Whitelisting 151
Complete Whitelisting Example 151

Virtual Patching 152
Vulnerability versus Exploit Patching 154
Failings of Exploit Detection 155
Impedance Mismatch 155
Preferred Virtual Patching Approach 157

IP Address Reputation and Blacklisting 157
IP Address Blocking 158
Geolocation 159

Property of Girish Motwani <kushalbooks@yahoo.co.in>

viii

Real-Time Block Lists 160
Local Reputation Management 161

Integration with Other Apache Modules 161
Conditional Logging 163
Header Manipulation 163
Securing Session Cookies 164

Advanced Blocking 165
Immediate Blocking 165
Keeping Detection and Blocking Separate 166
User-Friendly Blocking 167
External Blocking 168
Honeypot Diversion 169
Delayed Blocking 169
Score-Based Blocking 170

Making the Most of Regular Expressions 171
How ModSecurity Compiles Patterns 172
Changing How Patterns Are Compiled 173
Common Pattern Problems 174
Regular Expression Denial of Service 174
Resources 175

Working with Rule Sets 175
Deploying Rule Sets 176
Writing Rules for Distribution 177
Resources for Rule Writers 179

Summary 180
10. Performance . 181

Understanding Performance 181
Top 10 Performance Rules 182

Performance Tracking 184
Performance Metrics 184
Performance Logging 185
Real-Time Performance Monitoring 185

Load Testing 185
Rule Benchmarking 189

Preparation 189
Test Data Selection 190
Performance Baseline 192

Optimizing Pattern Matching 193
Rule per Keyword Approach 194

Property of Girish Motwani <kushalbooks@yahoo.co.in>

ix

Combined Regular Expression Pattern 195
Optimized Regular Expression Pattern 195
Parallel Pattern Matching 196
Test Results 197

Summary 197
11. Content Injection . 199

Writing Content Injection Rules 199
Communicating Back to the Server 201
Interrupting Page Rendering 202
Using External JavaScript Code 202

Communicating with Users 203
Summary 204

12. Writing Rules in Lua . 205
Rule Language Integration 206
Lua Rules Skeleton 206
Accessing Variables 206
Setting Variables 208
Logging 208
Lua Actions 208
Summary 209

13. Handling XML . 211
XML Parsing 211
DTD Validation 215
XML Schema Validation 216
XML Namespaces 217
XPath Expressions 220
XPath and Namespaces 222
XML Inspection Framework 222
Summary 224

14. Extending Rule Language . 225
Extension Template 226
Adding a Transformation Function 228
Adding an Operator 231
Adding a Variable 235
Adding a Request Body Processor 238
Summary 240

II. Reference Manual 243
15. Directives . 245

SecAction 245

Property of Girish Motwani <kushalbooks@yahoo.co.in>

x

SecArgumentSeparator 245
SecAuditEngine 246
SecAuditLog 246
SecAuditLog2 247
SecAuditLogDirMode 247
SecAuditLogFileMode 248
SecAuditLogParts 248
SecAuditLogRelevantStatus 250
SecAuditLogStorageDir 250
SecAuditLogType 250
SecCacheTransformations 251
SecChrootDir 252
SecCollectionTimeout 252
SecComponentSignature 253
SecContentInjection 253
SecCookieFormat 253
SecDataDir 254
SecDebugLog 254
SecDebugLogLevel 254
SecDefaultAction 255
SecDisableBackendCompression 255
SecGeoLookupDb 256
SecGsbLookupDb 256
SecGuardianLog 256
SecInterceptOnError 257
SecMarker 257
SecPcreMatchLimit 258
SecPcreMatchLimitRecursion 258
SecPdfProtect 259
SecPdfProtectMethod 259
SecPdfProtectSecret 259
SecPdfProtectTimeout 260
SecPdfProtectTokenName 260
SecReadStateLimit 260
SecRequestBodyAccess 261
SecRequestBodyLimit 261
SecRequestBodyLimitAction 262
SecRequestBodyNoFilesLimit 262
SecRequestBodyInMemoryLimit 263

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xi

SecResponseBodyLimit 263
SecResponseBodyLimitAction 263
SecResponseBodyMimeType 264
SecResponseBodyMimeTypesClear 264
SecResponseBodyAccess 265
SecRule 265
SecRuleInheritance 265
SecRuleEngine 266
SecRuleRemoveById 267
SecRuleRemoveByMsg 267
SecRuleRemoveByTag 267
SecRuleScript 267
SecRuleUpdateActionById 269
SecRuleUpdateTargetById 270
SecServerSignature 271
SecStreamInBodyInspection 271
SecStreamOutBodyInspection 272
SecTmpDir 272
SecUploadDir 272
SecUploadFileLimit 273
SecUploadFileMode 273
SecUploadKeepFiles 274
SecWebAppId 274
SecUnicodeCodePage 275
SecUnicodeMapFile 275
SecWriteStateLimit 275

16. Variables . 277
ARGS 277
ARGS_COMBINED_SIZE 277
ARGS_GET 277
ARGS_GET_NAMES 277
ARGS_NAMES 277
ARGS_POST 278
ARGS_POST_NAMES 278
AUTH_TYPE 278
DURATION 278
ENV 278
FILES 278
FILES_COMBINED_SIZE 279

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xii

FILES_NAMES 279
FILES_SIZES 279
FILES_TMPNAMES 279
GEO 279
HIGHEST_SEVERITY 280
INBOUND_DATA_ERROR 280
MATCHED_VAR 280
MATCHED_VAR_NAME 281
MATCHED_VARS 281
MATCHED_VARS_NAMES 281
MODSEC_BUILD 281
MULTIPART_CRLF_LF_LINES 281
MULTIPART_STRICT_ERROR 282
MULTIPART_UNMATCHED_BOUNDARY 283
OUTBOUND_DATA_ERROR 283
PATH_INFO 283
PERF_ALL 283
PERF_COMBINED 284
PERF_GC 284
PERF_LOGGING 284
PERF_PHASE1 284
PERF_PHASE2 284
PERF_PHASE3 284
PERF_PHASE4 284
PERF_PHASE5 284
PERF_SREAD 285
PERF_SWRITE 285
QUERY_STRING 285
REMOTE_ADDR 285
REMOTE_HOST 285
REMOTE_PORT 285
REMOTE_USER 286
REQBODY_ERROR 286
REQBODY_ERROR_MSG 286
REQBODY_PROCESSOR 286
REQBODY_PROCESSOR_ERROR 286
REQBODY_PROCESSOR_ERROR_MSG 287
REQUEST_BASENAME 287
REQUEST_BODY 287

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xiii

REQUEST_BODY_LENGTH 287
REQUEST_COOKIES 287
REQUEST_COOKIES_NAMES 288
REQUEST_FILENAME 288
REQUEST_HEADERS 288
REQUEST_HEADERS_NAMES 288
REQUEST_LINE 288
REQUEST_METHOD 289
REQUEST_PROTOCOL 289
REQUEST_URI 289
REQUEST_URI_RAW 289
RESPONSE_BODY 289
RESPONSE_CONTENT_LENGTH 290
RESPONSE_CONTENT_TYPE 290
RESPONSE_HEADERS 290
RESPONSE_HEADERS_NAMES 290
RESPONSE_PROTOCOL 290
RESPONSE_STATUS 291
RULE 291
SCRIPT_BASENAME 291
SCRIPT_FILENAME 291
SCRIPT_GID 291
SCRIPT_GROUPNAME 291
SCRIPT_MODE 292
SCRIPT_UID 292
SCRIPT_USERNAME 292
SERVER_ADDR 292
SERVER_NAME 292
SERVER_PORT 292
SESSION 293
SESSIONID 293
STREAM_INPUT_BODY 293
STREAM_OUTPUT_BODY 293
TIME 294
TIME_DAY 294
TIME_EPOCH 294
TIME_HOUR 294
TIME_MIN 294
TIME_MON 294

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xiv

TIME_SEC 294
TIME_WDAY 295
TIME_YEAR 295
TX 295
UNIQUE_ID 295
URLENCODED_ERROR 296
USERID 296
WEBAPPID 296
WEBSERVER_ERROR_LOG 296
XML 296

17. Transformation Functions . 299
base64Decode 300
base64DecodeExt 300
base64Encode 300
cmdLine 300
compressWhitespace 300
cssDecode 301
decodeBase64Ext 301
escapeSeqDecode 301
hexDecode 301
hexEncode 301
htmlEntityDecode 301
jsDecode 302
length 302
lowercase 302
md5 302
none 302
normalisePath 302
normalisePathWin 302
normalizePath 303
normalizePathWin 303
parityEven7bit 303
parityOdd7bit 303
parityZero7bit 303
removeComments 303
removeCommentsChar 303
removeNulls 303
removeWhitespace 303
replaceComments 304

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xv

replaceNulls 304
urlDecode 304
urlDecodeUni 304
urlEncode 304
sha1 304
sqlHexDecode 305
trimLeft 305
trimRight 305
trim 305

18. Actions . 307
allow 307
append 308
auditlog 308
block 308
capture 309
chain 309
ctl 310
deny 311
deprecatevar 311
drop 312
exec 312
expirevar 312
id 313
initcol 313
log 314
logdata 314
msg 314
multiMatch 314
noauditlog 315
nolog 315
pass 315
pause 315
phase 316
prepend 316
proxy 316
redirect 317
rev 317
sanitiseArg 317
sanitiseMatched 317

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xvi

sanitiseMatchedBytes 318
sanitiseRequestHeader 318
sanitiseResponseHeader 318
sanitizeArg 318
sanitizeMatched 318
sanitizeMatchedBytes 318
sanitizeRequestHeader 319
sanitizeResponseHeader 319
severity 319
setuid 319
setsid 320
setenv 320
setvar 320
skip 321
skipAfter 321
status 321
t 322
tag 322
xmlns 322

19. Operators . 323
beginsWith 323
contains 323
endsWith 323
eq 323
ge 324
geoLookup 324
gsbLookup 324
gt 325
inspectFile 325
ipMatch 326
le 327
lt 327
pm 327
pmf 327
pmFromFile 328
rbl 329
rsub 329
rx 329
streq 330

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xvii

validateByteRange 330
validateDTD 331
validateSchema 331
validateUrlEncoding 331
validateUtf8Encoding 332
verifyCC 332
verifyCPF 333
verifySSN 333
within 333

20. Data Formats . 335
Alerts 335

Alert Action Description 335
Alert Justification Description 336
Metadata 337
Escaping 338
Alerts in the Apache Error Log 338
Alerts in Audit Logs 339

Audit Log 339
Parts 340
Storage Formats 348
Remote Logging Protocol 349

Index . 351

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xviii

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xix

Preface
I didn’t mean to write this book, I really didn’t. Several months ago I started to work on the
second edition of Apache Security, deciding to rewrite the ModSecurity chapter first. A funny
thing happened: the ModSecurity chapter kept growing and growing. It hit 40 pages. It hit 80
pages. And then I realized that I was nowhere near the end. That was all the excuse I needed
to put Apache Security aside—for the time being—and focus on a ModSecurity book instead.

I admit that I couldn’t be happier, although it was an entirely emotional decision. After spend-
ing years working on ModSecurity, I knew it had so much more to offer, yet the documenta-
tion wasn’t there to show the way. But it is now, I am thrilled to say. The package is complete:
you have an open source tool that is able to compete with the best commercial products out
there, and you have the documentation to match.

With this book I am also trying something completely new—continuous writing and publish-
ing. You see, I had published my first book with a major publisher, but I never quite liked the
process. It was too slow. You write a book pretty much in isolation, you publish it, and then
you never get to update it. I was never happy with that, and that’s why I decided to do things
differently this time.

Simply said, ModSecurity Handbook is a living book. Every time I make a change, a new digital
version is made available to you. If I improve the book based on your feedback, you get the
improvements as soon as I make them. If you prefer a paper book, you can still get it of course,
through the usual channels. Although I can’t do anything about updating the paper version of
the book, we can narrow the gap slightly by pushing out book updates even between editions.
That means that, even when you get the paper version (as most people seem to prefer to), it
is never going to be too much behind the digital version.

Scope and Audience
This book exists to document every single aspect of ModSecurity and to teach you how to use
it. It is as simple as that. ModSecurity is a fantastic tool, but it is let down by the poor quality of
the documentation. As a result, the adoption is not as good as it could be; application security
is difficult on its own and you don’t really want to struggle with poorly documented tools

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xx Preface

too. I felt a responsibility to write this book and show how ModSecurity can compete with
commercial web application firewalls, in spite of being the underdog. Now that the book is
finished, I feel I’ve done a proper job with ModSecurity.

If you are interested in application security, you are my target audience. Even if you’re not
interested in application security as such, and only want to deal with your particular problems
(it’s difficult to find a web application these days that’s without security problems), you are
still my target audience.

You don’t need to know anything about ModSecurity to get started. If you just follow the book
from the beginning, you will find that every new chapter advances a notch. Even if you are a
long-time ModSecurity user, I believe you will benefit from a fresh start. I will let you in on
a secret—I have. There’s nothing better for completing one’s knowledge than having to write
about a particular topic. I suspect that long-time ModSecurity users will especially like the
second half of the book, which discusses many advanced topics and often covers substantial
new ground.

But, there is only so much a book can cover. ModSecurity Handbook assumes you already know
how to operate the Apache web server. You don’t have to be an expert, but you do need to know
how to install, configure, and run it. If you don’t know how to do that already, you should
get my first book, Apache Security. I wrote it five years ago, but it’s still remarkably fresh.
(Ironically, it is only the ModSecurity chapter in Apache Security that is completely obsolete.
But that’s why you have this book.)

On the other end, ModSecurity Handbook will teach you how to use ModSecurity and write
good rules, but it won’t teach you application security. In my earlier book, Apache Security,
I included a chapter that served as an introduction to application security, but, even then, I
was barely able to mention all that I wanted, and the chapter was still the longest chapter in
the book. Since then, the application security field has exploded and now you have to read
several books and dozens of research papers just to begin to understand it.

Contents
Once you go past the first chapter, which is the introduction to the world of ModSecurity, the
rest of the book consists of roughly three parts. In the first part, you learn how to install and
configure ModSecurity. In the second part, you learn how to write rules. As for the third part,
you could say that it contains the advanced stuff—a series of chapters each dedicated to one
important aspect of ModSecurity.

At the end of the book is the official reference documentation, reproduced with the permission
from Breach Security.

Chapter 1, Introduction, is the foundation of the book. It contains a gentle introduction to
ModSecurity, and then explains what it can and cannot do. The main usage scenarios are listed
to help you identify where you can use ModSecurity in your environment. The middle of the

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Contents xxi

chapter goes under the hood of ModSecurity to give you an insight into how it works, and
finishes with an overview of the key areas you will need to learn in order to deploy it. The
end of the chapter lists a series of resources (sites, mailing lists, tools, etc.) that you will find
useful in your day-to-day work.

Chapter 2, Installation, teaches you how to install ModSecurity, either compiling from source
(using one of the released versions or downloading straight from the development repository),
or by using one of the available binary packages, on Unix and Windows alike.

Chapter 3, Configuration, explains how each of the available configuration directives should
be used. By the end of the chapter, you get a complete overview of the configuration options
and will have a solid default configuration for all your ModSecurity installations.

Chapter 4, Logging, deals with the logging features of ModSecurity. The two main logging
facilities explained are the debug log, which is useful in rule writing, and the audit log, which
is used to log complete transaction data. Special attention is given to remote logging, which
you’ll need to manage multiple sensors, or to use any of the user-friendly tools for alert man-
agement. File interception and validation is covered in detail. The chapter ends with an ad-
vanced section of logging, which explains how to selectively log traffic, and how to use the
sanitation feature to prevent sensitive data from being stored in the logs.

Chapter 5, Rule Language Overview, is the first of the three chapters that deal with rule writing.
This chapter contains an overview of the entire rule language, which will get you started as
well as give you a feature map to which you can return whenever you need to deal with a new
problem.

Chapter 6, Rule Language Tutorial, teaches how to write rules, and how to write them well.
It’s a very fun chapter that adopts a gradual approach, introducing the features one by one.
By the end of the chapter, you will know everything about writing individual rules.

Chapter 7, Rule Configuration, completes the topic of rule writing. It takes a step back to view
the rules as the basic block for policy building. You first learn how to put a few rules together
and add them to the configuration, as well as how the rules interact with Apache’s ability to
use different configuration contexts for different sites and different locations within sites. The
chapter spends a great deal of time making sure you take advantage of the inheritance feature,
which helps make ModSecurity configuration much easier to maintain.

Chapter 8, Persistent Storage, is quite possibly the most exciting chapter in the book. It de-
scribes the persistent storage mechanism, which enables you to track data and events over
time and thus opens up an entire new dimension of ModSecurity. This chapter is also the
most practical one in the entire book. It gives you the rules for periodic alerting, brute force
attack detection, denial of service attack detection, session and user management, fixing ses-
sion management weaknesses, and more.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

xxii Preface

Chapter 9, Practical Rule Writing, is, as the name suggests, a tour through many of the practical
activities you will perform in your day-to-day work. The chapter starts by covering whitelist-
ing, virtual patching, IP address reputation and blacklisting. You then learn how to integrate
with other Apache modules, with practical examples that show how to perform conditional
logging and fix insecure session cookies. Special attention is given to the topic of blocking;
several approaches, starting from the simple to the very sophisticated, are presented. A section
on regular expressions gets you up to speed with the most important ModSecurity operator.
The chapter ends with a discussion of rule sets, discussing how to use the rule sets others have
written, as well as how to write your own.

Chapter 10, Performance, covers several performance-related topics. It opens with an overview
of where ModSecurity usually spends its time, a list of common configuration mistakes that
should be avoided, and a list of approaches that result in better performance. The second part
of the chapter describes how to monitor ModSecurity performance in production. The third
part tests the publicly available rule sets in order to give you a taste of what they are like, as
well as document a methodology you can use to test your own rules. The chapter then moves
to rule set benchmarking, which is an essential part of the process of rule writing. The last
part of this chapter gives very practical advice on how to use regular expressions and parallel
matching, comparing several approaches and explaining when to use them.

Chapter 11, Content Injection, explains how to reach from ModSecurity, which is a server-side
tool, right into a user’s browser and continue with the inspection there. This feature makes it
possible to detect the attacks that were previously thought to be undetectable by a server-side
tool, for example DOM-based cross-site scripting attacks. Content injection also comes in
handy if you need to communicate with your users—for example, to tell them that they have
been attacked.

Chapter 12, Writing Rules in Lua, discusses a gem of a feature: writing rules using the Lua
programming language. The rule language of ModSecurity is easy to use and can get a lot
done, but for the really difficult problems you may need the power of a proper programming
language. In addition, you can use Lua to react to events, and it is especially useful when
integrating with external systems.

Chapter 13, Handling XML, covers the XML capabilities of ModSecurity in detail. You get
to learn how to validate XML using either DTDs or XML Schemas, and how to combine
XPath expressions with the other features ModSecurity offers to perform both whitelist- and
blacklist-based validation. The XML features of ModSecurity have traditionally been poorly
documented; here you will find details never covered before. The chapter ends with an XML
validation framework you can easily adapt for your needs.

Chapter 14, Extending Rule Language, discusses how you can extend ModSecurity to imple-
ment new functionality. It gives several step-by-step examples, explaining how to implement
a transformation function, an operator, and a variable. Of course, with ModSecurity being

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Updates xxiii

open source, you can extend it directly at any point, but when you use the official APIs, you
avoid making a custom version of ModSecurity (which is generally time consuming because
it prevents upgrades).

Updates
If you purchased this book directly from Feisty Duck [https://www.feistyduck.com], your pur-
chase includes access to newer digital versions of the book. Updates are made automatically
after I update the manuscript, which I keep in DocBook format in a Subversion repository.
At the moment, there is a script that runs every hour, and rebuilds the book when necessary.
Whenever you visit your personal digital download link, you get the most recent version of
the book.

I use a dedicated Twitter account (@modsecuritybook) to announce relevant changes I make
to the book. By following that account you’ll find out about the improvements pretty much
as they happen. You can also follow my personal Twitter account (@ivanristic) or subscribe
to my blog [http://blog.ivanristic.com], if you are about computer security in general.

In the first two years of its life, I kept ModSecurity Handbook up-to-date with every ModSe-
curity release. There was a full revision in February 2012, which made the book essentially
as good and as current as it was on day of the first release back in 2010. Don’t take my past
performance as a guarantee of what is going to happen in the future, however. At the launch
in 2010 I offered a guarantee that the book will be kept up-to-date for at least a year from your
purchase. I dropped that promise at the end of 2011, because I could see the possibility that
I would stop with the updates at some point. I will keep my promise until the end of 2012,
but I don’t know what will happen after that.

Feedback
To get in touch with me please write to ivanr@webkreator.com. I would like to hear from you
very much, because I believe that a book can fulfill its potential only through the interaction
among its author(s) and the readers. Your feedback is particularly important when a book is
continuously updated, like this one is. When I change the book as a result of your feedback,
all the changes are immediately delivered back to you. There is no more waiting for years to
see the improvements!

About the Author
Ivan Ristić is a respected security expert and author, known especially for his contribution
to the web application firewall field and the development of ModSecurity, the open source
web application firewall. He is also the author of Apache Security, a comprehensive security

Property of Girish Motwani <kushalbooks@yahoo.co.in>

https://www.feistyduck.com
https://www.feistyduck.com
http://blog.ivanristic.com
http://blog.ivanristic.com

xxiv Preface

guide for the Apache web server. A frequent speaker at computer security conferences, Ivan
is an active participant in the application security community, a member of the Open Web
Application Security Project (OWASP), and an officer of the Web Application Security Con-
sortium (WASC).

About the Technical Reviewer
Brian Rectanus is the Director of Research Development at Breach Security, Inc., the current
maintainer of the ModSecurity code base and an active developer for the Open Information
Security Foundation’s Suricata IDS/IPS engine. He spends his time developing Breach’s com-
mercial web application firewall, working on ModSecurity, and helping out on the Suricata
engine when he can. Brian is an open source advocate and proud `NIX loving, non-Windows
user who has been writing code on various `NIX platforms with vi since 1993. Today he does
all his development on his trusty Ubuntu laptop using the more modern vim editor—like there
is any other—and loves every bit of it. Brian has spent the majority of his career working with
web technology from various perspectives, be it developer, administrator or security assessor.
Brian holds GCIA and GCIH certification from the SANS Institute and a BS in computer sci-
ence from Kansas State University.

Acknowledgments
To begin with, I would like to thank the entire ModSecurity community for their support,
and especially all of you who used ModSecurity and sent me your feedback. ModSecurity
wouldn’t be what it is without you. Developing and supporting ModSecurity was a remarkable
experience; I hope you enjoy using it as much as I enjoyed developing it.

I would also like to thank my former colleagues from Breach Security, who gave me a warm
welcome, even though I joined them pretty late in the game. I regret that, due to my geo-
graphic location, I didn’t spend more time working with you. I would especially like to thank
—in no particular order—Brian Rectanus, Ryan Barnett, Ofer Shezaf, and Avi Aminov, who
worked with me on the ModSecurity team. Brian was also kind to work with me on the book
as a technical reviewer, and I owe special thanks to him for ensuring I didn’t make too many
mistakes.

I mustn’t forget my copyeditor, Nancy Kotary, who was a pleasure to work with, despite having
to deal with DocBook and Subversion, none of which is in the standard copyediting repertoire.

For some reason unknown to me, my dear wife Jelena continues to tolerate my long working
hours. Probably because I keep promising to work less, even though that never seems to hap-
pen. To her I can only offer my undying love and gratitude for accepting me for who I am. My
daughter Iva, who’s four, is too young to understand what she means to me, but that’s all right
—I have the patience to wait for another 20 years or so. She is the other sunshine in my life.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

I User Guide
This part, with its 14 chapters, constitutes the main body of the book. The first chapter is the
introduction to ModSecurity and your map to the rest of the book. The remaining chapters fall into
roughly four groups: installation and configuration, rule writing, practical work, and advanced
topics.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

3

1 Introduction
ModSecurity is a tool that will help you secure your web applications. No, scratch that. Actu-
ally, ModSecurity is a tool that will help you sleep better at night, and I will explain how. I usu-
ally call ModSecurity a web application firewall (WAF), because that’s the generally accepted
term to refer to the class of products that are specifically designed to secure web applications.
Other times I will call it an HTTP intrusion detection tool, because I think that name better
describes what ModSecurity does. Neither name is entirely adequate, yet we don’t have a bet-
ter one. Besides, it doesn’t really matter what we call it. The point is that web applications—
yours, mine, everyone’s—are terribly insecure on average. We struggle to keep up with the
security issues and need any help we can get to secure them.

The idea to write ModSecurity came to me during one of my sleepless nights—I couldn’t sleep
because I was responsible for the security of several web-based products. I could see how most
web applications were slapped together with little time spent on design and little time spent
on understanding the security issues. Furthermore, not only were web applications insecure,
but we had no idea how insecure they were or if they were being attacked. Our only eyes were
the web server access and error logs, and they didn’t say much.

ModSecurity will help you sleep better at night because, above all, it solves the visibility prob-
lem: it lets you see your web traffic. That visibility is key to security: once you are able to see
HTTP traffic, you are able to analyze it in real time, record it as necessary, and react to the
events. The best part of this concept is that you get to do all of that without actually touch-
ing web applications. Even better, the concept can be applied to any application—even if you
can’t access the source code.

Brief History of ModSecurity
Like many other open source projects, ModSecurity started out as a hobby. Software develop-
ment had been my primary concern back in 2002, when I realized that producing secure web
applications is virtually impossible. As a result, I started to fantasize about a tool that would
sit in front of web applications and control the flow of data in and out. The first version was

Property of Girish Motwani <kushalbooks@yahoo.co.in>

4 Chapter 1: Introduction

released in November 2002, but a few more months were needed before the tool became use-
ful. Other people started to learn about it, and the popularity of ModSecurity started to rise.

Initially, most of my effort was spent wrestling with Apache to make request body inspection
possible. Apache 1.3.x did not have any interception or filtering APIs, but I was able to trick
it into submission. Apache 2.x improved things by providing APIs that do allow content in-
terception, but there was no documentation to speak of. Nick Kew released the excellent The
Apache Modules Book (Prentice Hall) in 2007, which unfortunately was too late to help me
with the development of ModSecurity.

By 2004, I was a changed man. Once primarily a software developer, I became obsessed with
web application security and wanted to spend more time working on it. I quit my job and
started treating ModSecurity as a business. My big reward came in the summer of 2006, when
ModSecurity went head to head with other web application firewalls, in an evaluation con-
ducted by Forrester Research, and came out very favorably. Later that year, my company was
acquired by Breach Security. A team of one eventually became a team of many: Brian Rectanus
came to work on ModSecurity, Ofer Shezaf took on the rules, and Ryan C. Barnett the com-
munity management and education. ModSecurity 2.0, a complete rewrite, was released in late
2006. At the same time we released ModSecurity Community Console, which combined the
functionality of a remote logging sensor and a monitoring and reporting GUI.

I stopped being in charge of ModSecurity in January 2009, when I left Breach Security. Brian
Rectanus subsequently took the lead. In the meantime, Ryan C. Barnett took charge of the
ModSecurity rules and produced a significant improvement with CRS v2. In 2010, Trustwave
acquired Breach Security and promised to revitalize ModSecurity. The project is currently run
by Ryan C. Barnett and Breno Silva, and there are indeed some signs that the project is getting
healthier. I remain involved primarily through my work on this book.

Something spectacular happened in March 2011: Trustwave announced that they would be
changing the license of ModSecurity from GPLv2 to Apache Software License (ASLv2). This
is a great step toward a wider use of ModSecurity because ASL falls into the category of per-
missive licenses. Later, the same change was announced for the Core Rule Set project (which
is hosted with OWASP).

What Can ModSecurity Do?
ModSecurity is a toolkit for real-time web application monitoring, logging, and access con-
trol. I like to think about it as an enabler: there are no hard rules telling you what to do; in-
stead, it is up to you to choose your own path through the available features. That’s why the
title of this section asks what ModSecurity can do, not what it does.

The freedom to choose what to do is an essential part of ModSecurity’s identity and goes very
well with its open source nature. With full access to the source code, your freedom to choose

Property of Girish Motwani <kushalbooks@yahoo.co.in>

What Can ModSecurity Do? 5

extends to the ability to customize and extend the tool itself to make it fit your needs. It’s not
a matter of ideology, but of practicality. I simply don’t want my tools to restrict what I can do.

Back on the topic of what ModSecurity can do, the following is a list of the most important
usage scenarios:

Real-time application security monitoring and access control
At its core, ModSecurity gives you access to the HTTP traffic stream, in real-time, along
with the ability to inspect it. This is enough for real-time security monitoring. There’s
an added dimension of what’s possible through ModSecurity’s persistent storage mech-
anism, which enables you to track system elements over time and perform event cor-
relation. You are able to reliably block, if you so wish, because ModSecurity uses full
request and response buffering.

Virtual patching
Virtual patching is a concept of vulnerability mitigation in a separate layer, where you
get to fix problems in applications without having to touch the applications themselves.
Virtual patching is applicable to applications that use any communication protocol, but
it is particularly useful with HTTP, because the traffic can generally be well understood
by an intermediary device. ModSecurity excels at virtual patching because of its reliable
blocking capabilities and the flexible rule language that can be adapted to any need. It
is, by far, the activity that requires the least investment, is the easiest activity to perform,
and the one that most organizations can benefit from straight away.

Full HTTP traffic logging
Web servers traditionally do very little when it comes to logging for security purposes.
They log very little by default, and even with a lot of tweaking you are not able to get
everything that you need. I have yet to encounter a web server that is able to log full
transaction data. ModSecurity gives you that ability to log anything you need, including
raw transaction data, which is essential for forensics. In addition, you get to choose
which transactions are logged, which parts of a transaction are logged, and which parts
are sanitized.

Continuous passive security assessment
Security assessment is largely seen as an active scheduled event, in which an indepen-
dent team is sourced to try to perform a simulated attack. Continuous passive security
assessment is a variation of real-time monitoring, where, instead of focusing on the
behavior of the external parties, you focus on the behavior of the system itself. It’s an
early warning system of sorts that can detect traces of many abnormalities and security
weaknesses before they are exploited.

Web application hardening
One of my favorite uses for ModSecurity is attack surface reduction, in which you se-
lectively narrow down the HTTP features you are willing to accept (e.g., request meth-
ods, request headers, content types, etc.). ModSecurity can assist you in enforcing many

Property of Girish Motwani <kushalbooks@yahoo.co.in>

6 Chapter 1: Introduction

similar restrictions, either directly, or through collaboration with other Apache mod-
ules. They all fall under web application hardening. For example, it is possible to fix
many session management issues, as well as cross-site request forgery vulnerabilities.

Something small, yet very important to you
Real life often throws unusual demands to us, and that is when the flexibility of Mod-
Security comes in handy where you need it the most. It may be a security need, but it
may also be something completely different. For example, some people use ModSecu-
rity as an XML web service router, combining its ability to parse XML and apply XPath
expressions with its ability to proxy requests. Who knew?

Note
I often get asked if ModSecurity can be used to protect Apache itself. The answer is
that it can, in some limited circumstances, but that it isn’t what it is designed for. You
may sometimes be able to catch an attack with ModSecurity before it hits a vulnerable
spot in Apache or in a third-party module, but there’s a large quantity of code that
runs before ModSecurity. If there’s a vulnerability in that area, ModSecurity won’t
be able to do anything about it.

What Are Web Application Firewalls, Anyway?
I said that ModSecurity is a web application firewall, but it’s a little known fact that no one
really knows what web application firewalls are. It is generally understood that a web application
firewall is an intermediary element (implemented either as a software add-on or process, or as a
network device) that enhances the security of web applications, but opinions differ once you dig
deeper. There are many theories that try to explain the different views, but the best one I could
come up with is that, unlike anything we had before, the web application space is so complex
that there is no easy way to classify what we do security-wise. Rather than focus on the name,
you should focus on what a particular tool does and how it can help.

If you want to learn more about the topic, there are two efforts that focus on understanding web
application firewalls:

• Web application firewall evaluation criteria [http://projects.webappsec.org/Web-Applica-
tion-Firewall-Evaluation-Criteria] (WAFEC) is a project of the Web Application Securi-
ty Consortium [http://www.webappsec.org] (WASC). It’s an older effort (which has been
inactive for a couple of years now) that focuses on the technical features of web applica-
tion firewalls.

• Best practices: Web Application Firewalls [http://www.owasp.org/index.php/
Best_Practices:_Web_Application_Firewalls] is a project of Open Web Application Securi-
ty Project [http://www.owasp.org] (OWASP) that focuses largely on the practicalities of
WAF deployment, which is an important aspect that is often overlooked.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria
http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria
http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria
http://www.webappsec.org
http://www.webappsec.org
http://www.webappsec.org
http://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
http://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
http://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
http://www.owasp.org
http://www.owasp.org
http://www.owasp.org

Guiding Principles 7

Guiding Principles
There are four guiding principles on which ModSecurity is based, as follows:

Flexibility
I think that it’s fair to say that I built ModSecurity for myself: a security expert who
needs to intercept, analyze, and store HTTP traffic. I didn’t see much value in hard-
coded functionality, because real life is so complex that everyone needs to do things
just slightly differently. ModSecurity achieves flexibility by giving you a powerful rule
language, which allows you to do exactly what you need to, in combination with the
ability to apply rules only where you need to.

Passiveness
ModSecurity will take great care to never interact with a transaction unless you tell it
to. That is simply because I don’t trust tools, even the one I built, to make decisions for
me. That’s why ModSecurity will give you plenty of information, but ultimately leave
the decisions to you.

Predictability
There’s no such thing as a perfect tool, but a predictable one is the next best thing.
Armed with all the facts, you can understand ModSecurity’s weak points and work
around them.

Quality over quantity
Over the course of six years spent working on ModSecurity, we came up with many
ideas for what ModSecurity could do. We didn’t act on most of them. We kept them
for later. Why? Because we understood that we have limited resources available at our
disposal and that our minds (ideas) are far faster than our implementation abilities.
We chose to limit the available functionality, but do really well at what we decided to
keep in.

There are bits in ModSecurity that fall outside the scope of these four principles. For example,
ModSecurity can change the way Apache identifies itself to the outside world, confine the
Apache process within a jail, and even implement an elaborate scheme to deal with a once-
infamous universal XSS vulnerability in Adobe Reader. Although it was I who added those
features, I now think that they detract from the main purpose of ModSecurity, which is a
reliable and predictable tool that allows for HTTP traffic inspection.

Deployment Options
ModSecurity supports two deployment options: embedded and reverse proxy deployment.
There is no one correct way to use them; choose an option based on what best suits your
circumstances. There are advantages and disadvantages to both options:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

8 Chapter 1: Introduction

Embedded
Because ModSecurity is an Apache module, you can add it to any compatible version
of Apache. At the moment that means a reasonably recent Apache version from the
2.0.x branch, although a newer 2.2.x version is recommended. The embedded option
is a great choice for those who already have their architecture laid out and don’t want
to change it. Embedded deployment is also the only option if you need to protect hun-
dreds of web servers. In such situations, it is impractical to build a separate proxy-
based security layer. Embedded ModSecurity not only does not introduce new points
of failure, but it scales seamlessly as the underlying web infrastructure scales. The main
challenge with embedded deployment is that server resources are shared between the
web server and ModSecurity.

Reverse proxy
Reverse proxies are effectively HTTP routers, designed to stand between web servers
and their clients. When you install a dedicated Apache reverse proxy and add ModSe-
curity to it, you get a “proper” network web application firewall, which you can use
to protect any number of web servers on the same network. Many security practition-
ers prefer having a separate security layer. With it you get complete isolation from the
systems you are protecting. On the performance front, a standalone ModSecurity will
have resources dedicated to it, which means that you will be able to do more (i.e., have
more complex rules). The main disadvantage of this approach is the new point of fail-
ure, which will need to be addressed with a high-availability setup of two or more re-
verse proxies.

Is Anything Missing?
ModSecurity is a very good tool, but there are a number of features, big and small, that could
be added. The small features are those that would make your life with ModSecurity easier,
perhaps automating some of the boring work (e.g., persistent blocking, which you now have
to do manually). But there are really only two features that I would call missing:

Learning
Defending web applications is difficult, because there are so many of them, and they
are all different. (I often say that every web application effectively creates its own com-
munication protocol.) It would be very handy to have ModSecurity observe applica-
tion traffic and create a model that could later be used to generate policy or assist with
false positives. While I was at Breach Security, I started a project called ModProfiler
[http://www.modsecurity.org/projects/modprofiler/] as a step toward learning, but
that project is still as I left it, as version 0.2.

Passive mode of deployment
ModSecurity can be embedded only in Apache 2.x, but when you deploy it as a reverse
proxy, it can be used to protect any web server. Reverse proxies are not everyone’s cup of

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.modsecurity.org/projects/modprofiler/
http://www.modsecurity.org/projects/modprofiler/

Getting Started 9

tea, however, and sometimes it would be very handy to deploy ModSecurity passively,
without having to change anything on the network.

Although a GUI is not within the scope of the project, there are currently two options when it
comes to remote logging and alert management. You will find them in the Resources section
later in this chapter.

Getting Started
In this first practical section in the book, I will give you a whirlwind tour of the ModSecurity
internals, which should help you get started.

Hybrid Nature of ModSecurity
ModSecurity is a hybrid web application firewall engine that relies on the host web server
for some of the work. The only supported web server at the moment is Apache 2.x, but it
is possible, in principle, to integrate ModSecurity with any other web server that provides
sufficient integration APIs.

Apache does for ModSecurity what it does for all other modules—it handles the infrastructure
tasks:

1. Decrypts SSL

2. Breaks up the inbound connection stream into HTTP requests

3. Partially parses HTTP requests

4. Invokes ModSecurity, choosing the correct configuration context (<VirtualHost>,
<Location>, etc.)

5. De-chunks request bodies as necessary

There a few additional tasks Apache performs in a reverse proxy scenario:

1. Forwards requests to backend servers (with or without SSL)

2. Partially parses HTTP responses

3. De-chunks response bodies as necessary

The advantage of a hybrid implementation is that it is very efficient—the duplication of work
is minimal when it comes to HTTP parsing. A couple of disadvantages of this approach are
that you don’t always get access to the raw data stream and that web servers sometimes don’t
process data in the way a security-conscious tool would. In the case of Apache, the hybrid
approach works reasonably well, with a few minor issues:

Request line and headers are NUL-terminated
This is normally not a problem, because what Apache doesn’t see cannot harm any
module or application. In some very rare cases, however, the purpose of the NUL-byte
evasion is to hide things, and this Apache behavior only helps with the hiding.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

10 Chapter 1: Introduction

Request header transformation
Apache will canonicalize request headers, combining multiple headers that use the
same name and collapsing those that span two or more lines. The transformation may
make it difficult to detect subtle signs of evasion, but in practice this hasn’t been a
problem yet.

Quick request handling
Apache will handle some requests quickly, leaving ModSecurity unable to do anything
but notice them in the logging phase. Invalid HTTP requests, in particular, will be re-
jected by Apache without ModSecurity having a say.

No access to some response headers
Because of the way Apache works, the Server and Date response headers are invisible
to ModSecurity; they cannot be inspected or logged.

Main Areas of Functionality
The functionality offered by ModSecurity falls roughly into four areas:

Parsing
ModSecurity tries to make sense of as much data as available. The supported data for-
mats are backed by security-conscious parsers that extract bits of data and store them
for use in the rules.

Buffering
In a typical installation, both request and response bodies will be buffered. This means
that ModSecurity usually sees complete requests before they are passed to the applica-
tion for processing, and complete responses before they are sent to clients. Buffering
is an important feature, because it is the only way to provide reliable blocking. The
downside of buffering is that it requires additional RAM to store the request and re-
sponse body data.

Logging
Full transaction logging (also referred to as audit logging) is a big part of what ModSe-
curity does. This feature allows you to record complete HTTP traffic, instead of just
rudimentary access log information. Request headers, request body, response header,
response body—all those bits will be available to you. It is only with the ability to see
what is happening that you will be able to stay in control.

Rule engine
The rule engine builds on the work performed by all other components. By the time
the rule engine starts operating, the various bits and pieces of data it requires will all be
prepared and ready for inspection. At that point, the rules will take over to assess the
transaction and take actions as necessary.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

What Rules Look Like 11

Note
There’s one thing ModSecurity purposefully avoids to do: as a matter of design, Mod-
Security does not support data sanitization. I don’t believe in sanitization, purely be-
cause I believe that it is too difficult to get right. If you know for sure that you are be-
ing attacked (as you have to before you can decide to sanitize), then you should refuse
to process the offending requests altogether. Attempting to sanitize merely opens a
new battlefield where your attackers don’t have anything to lose, but everything to
win. You, on the other hand, don’t have anything to win, but everything to lose.

What Rules Look Like
Everything in ModSecurity revolves around two things: configuration and rules. The
configuration tells ModSecurity how to process the data it sees; the rules decide what to do
with the processed data. Although it is too early to go into how the rules work, I will show
you a quick example here just to give you an idea what they look like.

For example:

SecRule ARGS "<script>" log,deny,status:404

Even without further assistance, you can probably recognize the part in the rule that specifies
what we wish to look for in input data (<script>). Similarly, you will easily figure out what will
happen if we do find the desired pattern (log,deny,status:404). Things will become more
clear if I tell you about the general rule syntax, which is the following:

SecRule VARIABLES OPERATOR ACTIONS

The three parts have the following meanings:

1. The VARIABLES part tells ModSecurity where to look. The ARGS variable, used in the ex-
ample, means all request parameters.

2. The OPERATOR part tells ModSecurity how to look. In the example, we have a regular
expression pattern, which will be matched against ARGS.

3. The ACTIONS part tells ModSecurity what to do on a match. The rule in the example
gives three instructions: log problem, deny transaction and use the status 404 for the
denial (status:404).

I hope you are not disappointed with the simplicity of this first rule. I promise you that by
combining the various facilities offered by ModSecurity, you will be able to write very useful
rules that implement complex logic where necessary.

Transaction Lifecycle
In ModSecurity, every transaction goes through five steps, or phases. In each of the phases,
ModSecurity will do some work at the beginning (e.g., parse data that has become available),

Property of Girish Motwani <kushalbooks@yahoo.co.in>

12 Chapter 1: Introduction

invoke the rules specified to work in that phase, and perhaps do a thing or two after the phase
rules have finished. At first glance, it may seem that five phases are too many, but there’s a
reason why each of the phases exist. There is always one thing, sometimes several, that can
only be done at a particular moment in the transaction lifecycle.

Request headers (1)
The request headers phase is the first entry point for ModSecurity. The principal pur-
pose of this phase is to allow rule writers to assess a request before the costly request
body processing is undertaken. Similarly, there is often a need to influence how Mod-
Security will process a request body, and this phase is the place to do it. For example,
ModSecurity will not parse an XML request body by default, but you can instruct it do
so by placing the appropriate rules into phase 1. (If you care about XML processing, it
is described in detail in Chapter 13, Handling XML).

Request body (2)
The request body phase is the main request analysis phase and takes place immediately
after a complete request body has been received and processed. The rules in this phase
have all the available request data at their disposal.

Response headers (3)
The response headers phase takes place after response headers become available, but
before a response body is read. The rules that need to decide whether to inspect a re-
sponse body should run in this phase.

Response body (4)
The response body phase is the main response analysis phase. By the time this phase
begins, the response body will have been read, with all its data available for the rules
to make their decisions.

Logging (5)
The logging phase is special in more ways than one. First, it’s the only phase from which
you cannot block. By the time this phase runs, the transaction will have finished, so
there’s little you can do but record the fact that it happened. Rules in this phase are run
to control how logging is done.

Lifecycle Example
To give you a better idea what happens on every transaction, we’ll examine a detailed debug log
of one POST transaction. I’ve deliberately chosen a transaction type that uses the request body
as its principal method to transmit data, because following such a transaction will exercise
most parts of ModSecurity. To keep things relatively simple, I used a configuration without
any rules, removed some of the debug log lines for clarity, and removed the timestamps and
some additional metadata from each line.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Transaction Lifecycle 13

Note
Please do not try to understand everything about the logs at this point. The idea
is just to get a general feel about how ModSecurity works, and to introduce you to
debug logs. Very quickly after starting to use ModSecurity, you will discover that the
debug logs will be an indispensable rule writing and troubleshooting tool.

The transaction I am using as an example in this section is very straightforward. I made a point
of placing request data in two different places, parameter a in the query string and parameter
b in the request body, but there is little else of interest in the request:

POST /?a=test HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 6

b=test

The response is entirely unremarkable:

HTTP/1.1 200 OK
Date: Sun, 17 Jan 2010 00:13:44 GMT
Server: Apache
Content-Length: 12
Connection: close
Content-Type: text/html

Hello World!

ModSecurity is first invoked by Apache after request headers become available, but before a
request body (if any) is read. First comes the initialization message, which contains the unique
transaction ID generated by mod_unique_id. Using this information, you should be able to
pair the information in the debug log with the information in your access and audit logs.
At this point, ModSecurity will parse the information on the request line and in the request
headers. In this example, the query string part contains a single parameter (a), so you will see
a message documenting its discovery. ModSecurity will then create a transaction context and
invoke the REQUEST_HEADERS phase:

[4] Initialising transaction (txid SopXW38EAAE9YbLQ).
[5] Adding request argument (QUERY_STRING): name "a", value "test"
[4] Transaction context created (dcfg 8121800).
[4] Starting phase REQUEST_HEADERS.

Assuming that a rule didn’t block the transaction, ModSecurity will now return control to
Apache, allowing other modules to process the request before control is given back to it.

In the second phase, ModSecurity will first read and process the request body, if it is present.
In the following example, you can see three messages from the input filter, which tell you

Property of Girish Motwani <kushalbooks@yahoo.co.in>

14 Chapter 1: Introduction

what was read. The fourth message tells you that one parameter was extracted from the re-
quest body. The content type used in this request (application/x-www-form-urlencoded) is
one of the types ModSecurity recognizes and parses automatically. Once the request body is
processed, the REQUEST_BODY rules are processed.

[4] Second phase starting (dcfg 8121800).
[4] Input filter: Reading request body.
[9] Input filter: Bucket type HEAP contains 6 bytes.
[9] Input filter: Bucket type EOS contains 0 bytes.
[5] Adding request argument (BODY): name "b", value "test"
[4] Input filter: Completed receiving request body (length 6).
[4] Starting phase REQUEST_BODY.

The filters that keep being mentioned in the logs are parts of ModSecurity that handle request
and response bodies:

[4] Hook insert_filter: Adding input forwarding filter (r 81d0588).
[4] Hook insert_filter: Adding output filter (r 81d0588).

There will be a message in the debug log every time ModSecurity sends a chunk of data to the
request handler, and one final message to say that there isn’t any more data in the buffers.

[4] Input filter: Forwarding input: mode=0, block=0, nbytes=8192 …
(f 81d2228, r 81d0588).
[4] Input filter: Forwarded 6 bytes.
[4] Input filter: Sent EOS.
[4] Input filter: Input forwarding complete.

Shortly thereafter, the output filter will start receiving data, at which point the
RESPONSE_HEADERS rules will be invoked:

[9] Output filter: Receiving output (f 81d2258, r 81d0588).
[4] Starting phase RESPONSE_HEADERS.

Once all the rules have run, ModSecurity will continue to store the response body in its buffers,
after which it will run the RESPONSE_BODY rules:

[9] Output filter: Bucket type MMAP contains 12 bytes.
[9] Output filter: Bucket type EOS contains 0 bytes.
[4] Output filter: Completed receiving response body (buffered full - 12 bytes).
[4] Starting phase RESPONSE_BODY.

Again, assuming that none of the rules blocked, the accumulated response body will be for-
warded to the client:

[4] Output filter: Output forwarding complete.

Finally, the logging phase will commence. The LOGGING rules will be run first to allow them
to influence logging, after which the audit logging subsystem will be invoked to log the trans-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Transaction Lifecycle 15

action if necessary. A message from the audit logging subsystem will be the last transaction
message in the logs. In this example, ModSecurity tells us that it didn’t find anything of in-
terest in the transaction and that it sees no reason to log it:

[4] Initialising logging.
[4] Starting phase LOGGING.
[4] Audit log: Ignoring a non-relevant request.

File Upload Example
Requests that contain files are processed slightly differently. The changes can be best under-
stood by again following the activity in the debug log:

[4] Input filter: Reading request body.
[9] Multipart: Boundary: ---------------------------2411583925858
[9] Input filter: Bucket type HEAP contains 256 bytes.
[9] Multipart: Added part header "Content-Disposition" "form-data; name=\"f\"; …
filename=\"eicar.com.txt\""
[9] Multipart: Added part header "Content-Type" "text/plain"
[9] Multipart: Content-Disposition name: f
[9] Multipart: Content-Disposition filename: eicar.com.txt
[4] Multipart: Created temporary file: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Changing file mode to 0600: …
/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF
[9] Multipart: Added file part 9c870b8 to the list: name "f" file name …
"eicar.com.txt" (offset 140, length 68)
[9] Input filter: Bucket type EOS contains 0 bytes.
[4] Reqest body no files length: 96
[4] Input filter: Completed receiving request body (length 256).

In addition to seeing the multipart parser in action, you see ModSecurity creating a temporary
file (into which it will extract the upload) and adjusting its privileges to match the desired
configuration.

Then, at the end of the transaction, you will see the cleanup and the temporary file deleted:

[4] Multipart: Cleanup started (remove files 1).
[4] Multipart: Deleted file (part) …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF"

The temporary file will not be deleted if ModSecurity decides to keep an uploaded file. Instead,
it will be moved to the storage area:

[4] Multipart: Cleanup started (remove files 0).
[4] Input filter: Moved file from …
"/opt/modsecurity/var/tmp/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF" to …
"/opt/modsecurity/var/upload/20090819-175503-SowuZ38AAQEAACV-Agk-file-gmWmrF".

Property of Girish Motwani <kushalbooks@yahoo.co.in>

16 Chapter 1: Introduction

In the example traces, you’ve observed an upload of a small file that was stored in RAM. When
large uploads take place, ModSecurity will attempt to use RAM at first, switching to on-disk
storage once it becomes obvious that the file is larger:

[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 1536 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 576 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[9] Input filter: Bucket type HEAP contains 8000 bytes.
[4] Input filter: Request too large to store in memory, switching to disk.

A new file will be created to store the entire raw request body:

[4] Input filter: Created temporary file to store request body: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf
[4] Input filter: Wrote 129559 bytes from memory to disk.

This file is always deleted in the cleanup phase:

[4] Input filter: Removed temporary file: …
/opt/modsecurity/var/tmp//20090819-180105-Sowv0X8AAQEAACWAArs-request_body-4nZjqf

Impact on Web Server
The addition of ModSecurity will change how your web server operates. As with all Apache
modules, you pay for the additional flexibility and security ModSecurity gives you with in-
creased CPU and RAM consumption on your server. The exact amount will depend on your
configuration of ModSecurity and the usage of your server. Following is a detailed list of the
various activities that increase resource consumption:

• ModSecurity will add to the parsing already done by Apache, and that results in a slight
increase of CPU consumption.

• Complex parsers (e.g., XML) are more expensive.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

What Next? 17

• The handling of file uploads may require I/O operations. In some cases, inbound data
will be duplicated on disk.

• The parsing will add to the RAM consumption, because every extracted element (e.g.,
a request parameter) will need to be copied into its own space.

• Request bodies and response bodies are usually buffered in order to support reliable
blocking.

• Every rule in your configuration will use some of the CPU time (for the operator) and
RAM (to transform input data before it can be analyzed).

• Some of the operators used in the rules (e.g., the regular expression operator) are
CPU-intensive.

• Full transaction logging is an expensive I/O operation.

In practice, this list is important because it keeps you informed; what matters is that you have
enough resources to support your ModSecurity needs. If you do, then it doesn’t matter how
expensive ModSecurity is. Also, what’s expensive to someone may not be to someone else. If
you don’t have enough resources to do everything you want with ModSecurity, you will need
to monitor the operation of your system and remove some of the functionality to reduce the
resource consumption. Virtually everything that ModSecurity does is configurable, so you
should have no problems doing that.

It is generally easier to run ModSecurity in reverse proxy mode, because then you usually have
an entire server (with its own CPU and RAM) to play with. In embedded mode, ModSecurity
will add to the processing already done by the web server, so this method is more challenging
on a busy server.

For what it’s worth, ModSecurity generally uses the minimal necessary resources to perform
the desired functions, so this is really a case of exchanging functionality for speed: if you want
to do more, you have to pay more.

What Next?
The purpose of this section is to map your future ModSecurity activities and help you deter-
mine where to go from here. Where you will go depends on what you want to achieve and
how much time you have to spend. A complete ModSecurity experience, so to speak, consists
of the following elements:

Installation and configuration
This is the basic step that all users must learn how to perform. The next three chapters
will teach you how to make ModSecurity operational, performing installation, general
configuration, and logging configuration. Once you are done with that, you need to
decide what you want to do with it. That’s what the remainder of the book is for.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

18 Chapter 1: Introduction

Rule writing
Rule writing is an essential skill. You may currently view rules as a tool to use to de-
tect application security attacks. They are that, but they are also much more. In Mod-
Security, you write rules to find out more about HTTP clients (e.g., geolocation and
IP address reputation), perform long-term activity tracking (of IP addresses, sessions
and users, for example), implement policy decisions (use the available information to
make the decisions to warn or block), write virtual patches, and even to check on the
status of ModSecurity itself.

It is true that the attack detection rules are in a class of its own, but that’s mostly be-
cause, in order to write them successfully, you need to know so much about application
security. For that reason, many ModSecurity users generally focus on using third-party
rule sets for the attack detection. It’s a legitimate choice. Not everyone has the time
and inclination to become an application security expert. Even if you end up not using
any inspection rules whatsoever, the ability to write virtual patches is reason enough
to use ModSecurity.

Rule sets
The use of existing rule sets is the easiest way to get to the proverbial low hanging fruit:
invest small effort and reap big benefits. Traditionally, the main source of ModSecurity
rules has been the Core Rule Set project, now hosted with OWASP. On the other hand,
if you are keen to get your hands dirty, I can tell you that I draw great pleasure from
writing my own rules. It’s a great way to learn about application security. The only
drawback is that it requires a large time investment.

Remote logging and alert management GUI
ModSecurity is perfectly usable without a remote logging solution and without a GUI
(the two usually go together). Significant error messages are copied to Apache’s error
log. Complete transactions are usually logged to the audit log. With a notification sys-
tem in place, you will know when something happens, and you can visit the audit logs
to investigate. For example, many installations will divert Apache’s error log to a central
logging system (via syslog).

The process does become more difficult with more than one sensor to manage. Fur-
thermore, GUIs make the whole experience of monitoring much more pleasant. For
that reason you will probably seek to install one of the available remote centralization
tools and use their GUIs. The available options are listed in the Resources section, which
follows.

Resources
This section contains a list of assorted ModSecurity resources that can assist you in your work.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

General Resources 19

Figure 2-1. The homepage of www.modsecurity.org

General Resources
The following resources are the bare essentials:

ModSecurity web site
ModSecurity’s web site [https://www.modsecurity.org] is probably going to be your
main source of information. You should visit the web site from time to time, as well as
subscribe to receive the updates from the blog.

Official documentation
The official ModSecurity documentation [https://www.modsecurity.org/documenta-
tion/] is maintained in a wiki, but copies of it are made for inclusion with every release.

Issue tracker
The ModSecurity issue tracker [https://www.modsecurity.org/tracker/] is the place you
will want to visit for one of two reasons: to report a problem with ModSecurity it-
self (e.g., when you find a bug) or to check out the progress on the next (major or

Property of Girish Motwani <kushalbooks@yahoo.co.in>

https://www.modsecurity.org
https://www.modsecurity.org
https://www.modsecurity.org/documentation/
https://www.modsecurity.org/documentation/
https://www.modsecurity.org/documentation/
https://www.modsecurity.org/tracker/
https://www.modsecurity.org/tracker/

20 Chapter 1: Introduction

minor) version. Before reporting any problems, go through the Support Checklist
[http://www.modsecurity.org/documentation/support-request-checklist.html], which
will help you assemble the information required to help resolve your problem. Provid-
ing as much information as you can will help the developers understand and replicate
the problem, and provide a fix (or a workaround) quickly.

Users’ mailing list
The users’ mailing list [http://lists.sourceforge.net/lists/listinfo/mod-security-users]
(mod-security-users@lists.sourceforge.net) is a general-purpose mailing list where you
can discuss ModSecurity. Feel free to ask questions, propose improvements, and dis-
cuss ideas. That is the place where you’ll hear first about new ModSecurity versions.

ModSecurity@Freshmeat
If you subscribe to the users’ mailing list, you will generally find out about new versions
of ModSecurity as soon as they are released. If you care only about version releases,
however, you may consider subscribing to the new version notifications at the ModSe-
curity page at Freshmeat [http://freshmeat.net/projects/modsecurity].

Core Rules mailing list
Starting with version 2, the Core Rules [http://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project] project is part of OWASP
[http://www.owasp.org], and has a separate mailing list (owasp-modsecurity-core-
rule-set@lists.owasp.org).

Developer Resources
If you are interested in development work, you will need these:

Developers’ mailing list
The developers’ mailing list [https://lists.sourceforge.net/lists/listinfo/mod-securi-
ty-developers] is generally a lonely place, but if you do decide to start playing with the
ModSecurity source code, this list is the place to go to discuss your work.

Source code access
The source code of ModSecurity is hosted at a Subversion repository at SourceForge
[http://sourceforge.net/projects/mod-security/develop], which allows you to access it
directly or through a web-based user interface.

FishEye interface
If you are not looking to start developing immediately but still want to have a look at
the source code of ModSecurity, I recommend that you use the ModSecurity FishEye
interface [https://www.modsecurity.org/fisheye/], which is much better than the stock
interface available at SourceForge.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.modsecurity.org/documentation/support-request-checklist.html
http://www.modsecurity.org/documentation/support-request-checklist.html
http://lists.sourceforge.net/lists/listinfo/mod-security-users
http://lists.sourceforge.net/lists/listinfo/mod-security-users
http://freshmeat.net/projects/modsecurity
http://freshmeat.net/projects/modsecurity
http://freshmeat.net/projects/modsecurity
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.owasp.org
http://www.owasp.org
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
https://lists.sourceforge.net/lists/listinfo/mod-security-developers
http://sourceforge.net/projects/mod-security/develop
http://sourceforge.net/projects/mod-security/develop
https://www.modsecurity.org/fisheye/
https://www.modsecurity.org/fisheye/
https://www.modsecurity.org/fisheye/

AuditConsole 21

AuditConsole
Using ModSecurity entirely from the command line is possible but not much fun. The
configuration part is not a problem, but reviewing logs is difficult without higher-level tools.
Your best choice for a log centralization and GUI tool is AuditConsole, which is built by Chris-
tian Bockermann and hosted on jwall.org [http://www.jwall.org].

AuditConsole is free and provides the following features:

• Event centralization from multiple remote ModSecurity installations

• Event storage and retrieval

• Support for multiple user accounts and support for different views

• Event tagging

• Event rules, which are executed in the console

Summary
This chapter was your ModSecurity orientation. I introduced ModSecurity at a high level,
discussed what it is and what it isn’t, and what it can do and what it cannot. I also gave you a
taste of what ModSecurity is like and described common usage scenarios, as well as covered
some of the interesting parts of its operation.

The foundation you now have should be enough to help you set off on a journey of ModSe-
curity exploration. The next chapter discusses installation.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.jwall.org
http://www.jwall.org

22

Property of Girish Motwani <kushalbooks@yahoo.co.in>

23

2 Installation
Before you can install ModSecurity, you need to decide if you want to compile it from source
or use a binary version—either one included with your operating system or one produced by
a third party. Each of the options comes with its advantages and disadvantages, as listed in
Table 2.1, “Installation options”.

Table 2.1. Installation options

Installation type Advantages Disadvantages

Operating system version • Fully automated installation

• Maintenance included

• May not be the latest version

Third-party binary • Semi-automated installation • May not be the latest version

• Manual download and updates

• Do you trust the third party?

Source code • Can always use the latest version

• Can use experimental versions

• Can make changes, apply patches,
and make emergency security fixes

• Manual installation and maintenance
required

• A lot of work involved with rolling your
own version

In some cases, you won’t have a choice. For example, if you’ve installed Apache from source,
you will need to install ModSecurity from source too (you will be able to reuse the system
packages, of course). The following questions may help you to make the decision:

• Do you intend to use ModSecurity seriously?

• Are you comfortable compiling programs from source?

• Do you have enough time to spend on the compilation and the successive maintenance
of a custom-installed program?

• Will you need to make changes to ModSecurity, or write your own extensions?

Property of Girish Motwani <kushalbooks@yahoo.co.in>

24 Chapter 2: Installation

I generally try to use binary packages when they are available (and they are available on De-
bian, which is currently my platform of choice). When I build dedicated reverse proxy instal-
lations, however, I tend to build everything from source, because that allows me access to the
latest Apache and ModSecurity versions, and makes it easier to tweak things (by changing the
source code of either Apache or ModSecurity) when I want to.

Installation from Source
Installing from source is the preferred approach to installing ModSecurity, mostly because
that way you get the latest (and best) version, and because you are able to make any changes
you want.

Downloading Releases
To download ModSecurity, go to its web site [https://www.modsecurity.org] or the Source-
Forge project page [http://sourceforge.net/projects/mod-security/]. You will need both the
main distribution and the cryptographic signature:

$ wget http://www.modsecurity.org/download/modsecurity-apache_2.5.10-dev2.tar.gz
$ wget http://www.modsecurity.org/download/modsecurity-apache_2.5.10-dev2.tar.gz.asc

Verify the signature before doing anything else. That will ensure that the package you’ve just
downloaded does not contain a trojan horse planted by a third party and that it hasn’t been
corrupted during transport.

$ gpg --verify modsecurity-apache_2.5.10-dev2.tar.gz.asc
gpg: Signature made Wed 12 Aug 2009 23:27:06 BST using DSA key ID E77B534D
gpg: Can't check signature: public key not found

Your first attempt may not provide the expected results, but that can be solved easily by im-
porting the referenced key from a key server:

$ gpg --recv-keys E77B534D
gpg: requesting key E77B534D from hkp server keys.gnupg.net
gpg: /home/guest/.gnupg/trustdb.gpg: trustdb created
gpg: key E77B534D: public key "Brian Rectanus (work) <brian.rectanus@breach.com>" …
imported
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: imported: 1

Now you can try again:

$ gpg --verify modsecurity-apache_2.5.10-dev2.tar.gz.asc

Property of Girish Motwani <kushalbooks@yahoo.co.in>

https://www.modsecurity.org
https://www.modsecurity.org
http://sourceforge.net/projects/mod-security/
http://sourceforge.net/projects/mod-security/
http://sourceforge.net/projects/mod-security/

Downloading from Repository 25

gpg: Signature made Wed 12 Aug 2009 23:27:06 BST using DSA key ID E77B534D
gpg: Good signature from "Brian Rectanus (work) <brian.rectanus@breach.com>"
gpg: aka "Brian Rectanus <brian@rectanus.net>"
gpg: aka "Brian Rectanus (personal) <brectanu@gmail.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.

While this warning might look serious, it generally isn’t a problem, and has to do with the
way gpg expects you to verify the identity of an individual. The warning basically tells you
that you’ve downloaded Brian’s key from somewhere, but that you don’t really know that it
belongs to him. The only way to be sure, as far as gpg is concerned, is to meet Brian in real
life, or to meet someone else who knows him personally. If you want to learn more, look up
web of trust on Wikipedia.

Downloading from Repository
If you want to be on the cutting edge, downloading the latest development version directly
from the Subversion (the source code control system used by the ModSecurity project) repos-
itory is the way to go. When you do this, you’ll get new features days and even months before
they make it into an official stable release. Having said that, however, there is a reason why we
call some versions “stable.” When you use a repository version of ModSecurity, you need to
accept that there is no guarantee whatsoever that it will work correctly. For what it’s worth,
I am currently running a development version in production, and I am confident that it will
not bring my server down.

Before you can install a development version of ModSecurity, you need to know
where to find it. The repository, which is hosted with SourceForge [http://mod-
security.svn.sourceforge.net/viewvc/mod-security/], can be viewed with a browser. The view
of the root of the repository is similar to that in Figure 2-1, “ModSecurity repository root”.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://mod-security.svn.sourceforge.net/viewvc/mod-security/
http://mod-security.svn.sourceforge.net/viewvc/mod-security/
http://mod-security.svn.sourceforge.net/viewvc/mod-security/

26 Chapter 2: Installation

Figure 2-1. ModSecurity repository root

What you probably want is located in the m2/ directory, which houses ModSecurity 2.x. Within
that directory, you will find a directory structure that you will find familiar if you’ve worked
with Subversion before:

m2/
 branches/
 2.1.x/
 2.5.x/
 2.6.x/
 experimental/
 [some stuff you won't care about]
 tags/
 [all releases, one per directory]
 trunk/

The trunk directory always contains the most recent development version. The active branches
may sometimes contain a feature or a fix that has not been released yet. The branches will
always be generally stable anyway, and the risk of something breaking is minimal.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Installation on Unix 27

Once you have determined the location of the version of ModSecurity that you wish to use,
you can get it using the export command of Subversion, like this:

$ svn export https://mod-security.svn.sourceforge.net/svnroot/mod-security/…
 m2/trunk modsecurity-trunk

What you will get in the folder modsecurity-trunk is almost the same as what you get when
you download a release. The documentation might not be in sync, however. Starting with
ModSecurity 2.6, the master documentation is kept in a wiki, with copies of the wiki included
with releases.

Installation on Unix
Before you can start to compile ModSecurity, you must ensure that you have a complete devel-
opment toolchain installed. Refer to the documentation of the operating system you are using
for instructions. If you’ll be adding ModSecurity to an operating system–provided Apache,
you are likely to need to install a specific Apache development package, too. For example,
on Debian and Ubuntu, you need to use apache2-prefork-dev or apache2-threaded-dev, de-
pending on which deployment model (process-based or thread-based) you chose.

In the next step, ensure that you have resolved all the dependencies before compilation. The
dependencies are listed in Table 2.2, “ModSecurity dependencies”.

Table 2.2. ModSecurity dependencies

Dependency In Apache? Purpose

Apache Portable Runtime [http://apr.apache.org] Yes Various

APR-Util [http://apr.apache.org] Yes Various

mod_unique_id Yes, but may not be
installed by default

Generate unique transaction ID

libcurl [http://curl.haxx.se/libcurl/] No Remote logging (mlogc)

libxml2 [http://xmlsoft.org] No XML processing

Lua 5.1 [http://www.lua.org] No Writing complex rules in Lua (optional)

PCRE [http://www.pcre.org] Yes, but cannot be
used by ModSecu-
rity

Regular expression matching

If you already have Apache installed, you will only ever need to deal with libcurl, libxml2,
and Lua. With Apache compiled from source, you will also need the PCRE library. Although
Apache comes bundled with one, it is used in a way that does not allow other modules to
access it. To work around this issue, install PCRE separately and then tell Apache to use the
external copy. I explain how to do that later in this section.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://apr.apache.org
http://apr.apache.org
http://apr.apache.org
http://apr.apache.org
http://curl.haxx.se/libcurl/
http://curl.haxx.se/libcurl/
http://xmlsoft.org
http://xmlsoft.org
http://www.lua.org
http://www.lua.org
http://www.pcre.org
http://www.pcre.org

28 Chapter 2: Installation

If you’re installing from source, go to the packages’ web sites, and download and install the
tarballs. If you’re using managed packages, you just need to determine what the missing pack-
ages are called. On Debian Lenny, the following command installs the missing packages:

apt-get install libcurl3-dev liblua5.1-dev libxml2-dev

Refer to the documentation of the package management system used by your platform to
determine how to search the package database.

Note
Libcurl, which is used for remote logging, can be compiled to use OpenSSL or GnuT-
LS. You are advised to use OpenSSL because there have been complaints about re-
mote logging problems when GnuTLS was used.

The process should be straightforward from here on. Execute the following commands in
succession:

$./configure
$ make

This set of commands assumes that you don’t need any compile-time options. If you do, see
the following section. Before ModSecurity 2.6, the making of mlogc was optional and you had
to execute another make mlogc to do it.

Note
Running additional tests after compilation (make test and make test-regression) is
always a good idea, and is an especially good idea when using a development version
of ModSecurity. If you are going to have any problems, you want to have them before
installation, rather than after.

After ModSecurity is built, one more step is required to install it:

$ sudo make install

This command adds the module to your Apache installation, but does not activate it—you
must do that manually. (While you are there, confirm that mod_unique_id is enabled; Mod-
Security requires it.) The command will also create a folder (/usr/local/modsecurity by de-
fault) and store the various run-time files in it. Here’s what you get:

bin/
 mlogc
 mlogc-batch-load.pl
 rules-updater.pl
lib/
 mod_security2.so

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Installation on Unix 29

Compile-Time Options
The configuration example from the previous section assumed that the dependencies were all
installed as system libraries. It also assumed that the configure script will figure everything
out on its own. It may or may not, but chances are good that you will occasionally need to
do something different; this is where the compile-time options, listed in Table 2.3, “Main
compile-time options”, come in handy.

Table 2.3. Main compile-time options

Option Description

--with-apr Specify location of the Apache Portable Runtime library.

--with-apu Specify location of the APR-Util library.

--with-apxs Specify the location of Apache through the location of the apxs script.

--with-curl Specify the location of libcurl.

--with-libxml Specify the location of libxml2. Some older versions used --with-xml instead.

--with-pcre Specify the location of PCRE.

Custom-Compiled Apache Installations
Using ModSecurity with a custom-compiled version of Apache is more work than it should be
because of a dependency problem that we have to resolve manually. PCRE, which ModSecurity
uses for pattern matching, is a very popular library that is integrated into many operating
systems. The problem is that Apache bundles PCRE and uses the bundled version by default
when you compile it from source. Unless you take care to avoid conflicts, you’ll probably end
up with Apache using the bundled version of PCRE and ModSecurity using the one provided
by the operating system. The solution to this problem is to build Apache to use the external
PCRE version too, which requires just one change to the way you build Apache.

The configure option you need (remember, this is the configure of Apache, not ModSecurity)
is --with-pcre, and it is used like this:

$./configure \
 --with-pcre=/usr/bin/pcre-config \
 --enable-unique-id

We are also enabling the mod_unique_id module, which is required for ModSecurity’s full
transaction log. Now you need to again compile and install Apache.

To configure ModSecurity, use the --with-apxs compile-time option to specify the location
of your Apache installation. In the following example, I am assuming Apache is installed in
/home/ivanr/apache:

$./configure \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

30 Chapter 2: Installation

 --with-apxs=/home/ivanr/apache/bin/apxs

From here you install ModSecurity as described in the previous section.

After both Apache and ModSecurity are installed, you should confirm that both products link
to the same PCRE library, using ldd:

$ ldd ~/apache/bin/httpd | grep pcre
 libpcre.so.3 => /usr/lib/libpcre.so.3 (0xb7d3f000)

You should get the same result when you compile ModSecurity:

$ ldd ~/apache/modules/mod_security2.so | grep pcre
 libpcre.so.3 => /usr/lib/libpcre.so.3 (0xb7f4c000)

Tip
Mac OS X does not have ldd, but you can obtain the equivalent functionality by
running otool with option -L.

It is quite possible to have a configuration in which Apache uses its bundled PCRE and Mod-
Security another PCRE version available on the system. This is probably the most commonly
reported issue on the users’ mailing list because it not only prevents ModSecurity from work-
ing but also crashes Apache.

Starting with version 2.6, ModSecurity reports at startup (in the error log) the detected library
version numbers and compares them to those used at compile time. One or more warnings
will be issued if a mismatch is found. This feature is especially handy for troubleshooting
PCRE library collisions.

[notice] ModSecurity for Apache/2.6.0-rc1 (http://www.modsecurity.org/) configured.
[notice] ModSecurity: APR compiled version="1.3.8"; loaded version="1.3.8"
[notice] ModSecurity: PCRE compiled version="8.12"; loaded version="8.12 2011-01-15"
[notice] ModSecurity: LIBXML compiled version="2.7.3"

Installation from Binaries
As previously discussed, using a binary version of ModSecurity is often the easiest option, be-
cause it just works. Unfortunately, what you gain in ease of installation you lose by sometimes
being able to use only an older version. Further, packagers often do not include mlogc, which is
essential for remote log centralization. For that reason, I don’t recommend installation from
binaries unless there is no other way. If you do decide to check out what is available in bina-
ry form, the list of available binary packages is available from http://www.modsecurity.org/
download/.

Fedora Core, CentOS, and Red Hat Enterprise Linux

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.modsecurity.org/download/
http://www.modsecurity.org/download/

Debian and Ubuntu 31

If you are a Fedora Core user and you are running version 10 or later, you can install ModSe-
curity directly from the official distribution, using yum:

yum install mod_security

On CentOS and Red Hat Enterprise Linux, you have two options. One is to use the pack-
ages from EPEL [http://fedoraproject.org/wiki/EPEL] (Extra Packages for Enterprise Linux),
which is a volunteer effort and part of the Fedora community. The other option is to use the
custom packages built by Jason Litka [http://www.jasonlitka.com/yum-repository/]. Either
way, the available packages support CentOS/RHEL 4.x and 5.x, on the i386 and x86_64 archi-
tectures. The installation process is the same as for Fedora Core.

Debian and Ubuntu
Debian was the first distribution to include ModSecurity, but also the first distribution to
kick it out due to a licensing issue. The ModSecurity license was clarified in version 2.5.6 with
the addition of an open source exception, and that opened the door for it to get back into
Debian. Alberto Gonzalez Iniesta has been a long-time supporter of ModSecurity on Debian,
supporting ModSecurity in his own (unofficial) repository, and is now the official packager.

If you are running a version of Debian or Ubuntu that includes ModSecurity, the installation
is as easy as:

apt-get install libapache-mod-security

This single command will download the package and install it, then activate the module in
the Apache configuration.

Note
Don’t forget that Debian uses a special system to manage Apache modules and sites.
To activate and deactivate modules, use a2enmod and a2dismod, respectively. To man-
age Apache, use apache2ctl.

Installation on Windows
ModSecurity was ported to Windows early on, in 2003, and has run well on this platform ever
since. Windows binary packages of ModSecurity are maintained by Steffen Land, who runs
Apache Lounge [http://www.apachelounge.com], a community for those who run Apache on
Windows. In addition to ModSecurity, Steffen maintains his version of Apache itself, as well
as many third-party modules you might want to run on Windows. The ModSecurity binary
packages are consistently up to date, so you will have little trouble if you want to run the latest
version. The download includes ModSecurity as well as mlogc.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://www.jasonlitka.com/yum-repository/
http://www.jasonlitka.com/yum-repository/
http://www.apachelounge.com
http://www.apachelounge.com

32 Chapter 2: Installation

Note
Although it might be possible to run Steffen’s ModSecurity binaries with a version
of Apache produced elsewhere, you should really use only the packages from a single
location that are intended to be used together. If you don’t, you may encounter un-
usual behavior and web server crashes.

The installation is quite easy. First, download the package and copy the dynamic libraries into
the modules/ folder (of the Apache installation). Then, modify your Apache configuration to
activate ModSecurity:

LoadModule security2_module modules/mod_security2.so

You will also need to activate mod_unique_id. This module may not be already active, but there
should already be a commented-out line in your configuration. You just need to find it and
uncomment it. If it isn’t there, just add the following:

LoadModule unique_id_module modules/mod_unique_id.so

Summary
It’s never been easier to install ModSecurity, now that it is included with so many operating
system and distributions. Although the installation from source code gives you guaranteed
access to the most recent version, as well as access to the yet-unreleased code, it can be time-
consuming if you are not used to it. It’s not everyone’s cup of tea. There is something to be
said for using the provided version and not having to think about upgrading (and saving the
time it takes to upgrade).

In the next chapter, I’ll explain each of the configuration options, teaching you how to set
every single option, step by step, so that everything is just the way you like it.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

33

3 Configuration
Now that you have ModSecurity compiled and ready to run, we can proceed to the
configuration. This section, with its many subsections, goes through every part of ModSecu-
rity configuration, explicitly configuring every little detail:

• Going through all the configuration directives will give you a better understanding of
how ModSecurity works. Even if there are features that you don’t need immediate-
ly, you will learn that they exist and you’ll be able to take advantage of them when the
need arises.

• By explicitly configuring every single feature, you will foolproof your configuration
against incompatible changes to default settings that may happen in future versions of
ModSecurity.

In accordance with its philosophy, ModSecurity won’t do anything implicitly. It won’t even
run unless you tell it to. There are three reasons for that:

1. By not doing anything implicitly, we ensure that ModSecurity does only what you tell
it to. That not only keeps you in control, but it also makes you think about every fea-
ture before you add it to your configuration.

2. It is impossible to design a default configuration that works in all circumstances. We
can give you a framework within which you can work (as I am doing in this section),
but you still need to shape your configuration according to your needs.

3. Security is not free. You pay for it by the increased consumption of RAM, CPU, or the
possibility that you may block a legitimate request. Incorrect configuration may cause
problems, so we need you to think carefully about what you’re doing.

The remainder of this section explains the proposed default configuration for ModSecu-
rity. You can get a good overview of the default configuration simply by examining the
configuration directives supported by ModSecurity, which are listed in Table 3.1, “Main
configuration directives” (with the exception of the logging directives, which are listed in sev-
eral tables in the Chapter 4, Logging).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

34 Chapter 3: Configuration

Table 3.1. Main configuration directives

Directive Description

SecArgumentSeparator Sets the application/x-www-form-urlencoded parameter separator

SecCookieFormat Sets the cookie parser version

SecDataDir Sets the folder for persistent storage

SecRequestBodyAccess Controls request body buffering

SecRequestBodyInMemoryLimit Sets the size of the per-request memory buffer

SecRequestBodyLimit Sets the maximum request body size ModSecurity will accept

SecRequestBodyLimitAction Controls what happens once the request body limit is reached

SecRequestBodyNoFilesLimit Sets the maximum request body size, excluding uploaded files

SecResponseBodyAccess Controls response body buffering

SecResponseBodyLimit Specifies the response body buffering limit

SecResponseBodyLimitAction Controls what happens once the response body limit is reached

SecResponseBodyMimeType Specifies a list of response body MIME types to inspect

SecResponseBodyMimeTypesClear Clears the list of response body MIME types

SecRuleEngine Controls the operation of the rule engine

SecTmpDir Sets the folder for temporary files

Folder Locations
Your first configuration task is to decide where on the filesystem to put the various bits and
pieces that every ModSecurity installation consists of. Installation layout is often a matter of
taste, so it is difficult for me to give you advice. Similarly, different choices may be appropriate
in different circumstances. For example, if you are adding ModSecurity to a web server and
you intend to use it only occasionally, you may not want to use an elaborate folder structure,
in which case you’ll probably put the ModSecurity folder underneath Apache’s. When you’re
using ModSecurity as part of a dedicated reverse proxy installation, however, a well–thought
out structure is something that will save you a lot of time in the long run.

I prefer to always use an elaborate folder layout, because I like things to be neat and tidy, and
because the consistency helps me when I am managing multiple ModSecurity installations.
I start by creating a dedicated folder for ModSecurity (/opt/modsecurity) with multiple sub-
folders underneath. The subfolders that are written to at runtime are all grouped (in /opt/
modsecurity/var), which makes it easy to relocate them to a different filesystem using a sym-
bolic link. I end up with the following structure:

Binaries
/opt/modsecurity/bin

Configuration files
/opt/modsecurity/etc

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Folder Locations 35

Audit logs
/opt/modsecurity/var/audit

Persistent data
/opt/modsecurity/var/data

Logs
/opt/modsecurity/var/log

Temporary files
/opt/modsecurity/var/tmp

File uploads
/opt/modsecurity/var/upload

Getting the permissions right may involve slightly more effort, depending on your circum-
stances. Most Apache installations bind to privileged ports (e.g., 80 and 443), which means
that the web server must be started as root, and that further means that root must be the
principal owner of the installation. Because it’s not good practice to stay root at runtime,
Apache will switch to a low-privilege account (we’ll assume it’s apache) as soon as it initializes.
You’ll find the proposed permissions in Table 3.2, “Folder permissions”.

Table 3.2. Folder permissions

Location Owner Group Permissions

/opt/modsecurity root apache rwxr-x---

/opt/modsecurity/bin root apache rwxr-x---

/opt/modsecurity/etc root root rwx------

/opt/modsecurity/var root apache rwxr-x---

/opt/modsecurity/var/audit apache root rwx------

/opt/modsecurity/var/data apache root rwx------

/opt/modsecurity/var/log root root rwx------

/opt/modsecurity/var/tmp apache apache rwxr-x---

/opt/modsecurity/var/upload apache root rwx------

I’ve arrived at the desired permission layout through the following requirements:

1. As already discussed, it is root that owns everything by default, and we assign owner-
ship to apache only where that is necessary.

2. In two cases (/opt/modsecurity and /opt/modsecurity/var), we need to allow apache
to access a folder so that it can get to a subfolder; we do this by creating a group, also

Property of Girish Motwani <kushalbooks@yahoo.co.in>

36 Chapter 3: Configuration

called apache, of which user apache is the only member. We use the same group for the
/opt/modsecurity/bin folder, where you might store some binaries Apache will need
to execute at runtime.

3. One folder, /opt/modsecurity/var/log, stands out, because it is the only folder under-
neath /opt/modsecurity/var where apache is not allowed to write. That folder con-
tains log files that are opened by Apache early on, while it is still running as root. On
any Unix system, you must have only one account with write access to that folder, and
it has to be the principal owner. In our case, that must be root. Doing otherwise would
create a security hole, whereby the apache user would be able to obtain partial root
privileges using symlink trickery. (Essentially, in place of a log file, the apache user cre-
ates a symlink to some other root-owned file on the system. When Apache starts it
runs as root and opens for writing the system file that the apache user would other-
wise be unable to touch. By submitting requests to Apache, one might be able to con-
trol exactly what is written to the log files. That can lead to system compromise.)

4. A careful observer will notice that I’ve allowed group folder access to /opt/modsecuri-
ty/var/tmp (which means that any member of the apache group is allowed to read the
files in the folder) even though this folder is owned by apache, which already has full
access. This is because you will sometimes want to allow ModSecurity to exchange in-
formation with a third user account—for example, if you want to scan uploaded files
for viruses (usually done using ClamAV). To allow the third user account to access the
files created by ModSecurity, you just need to make it a member of the apache group
and relax the file permissions using the SecUploadFileMode directive.

Note
As an exception to the proposed layout, you may want to reuse Apache’s log directory
for ModSecurity logs. If you don’t, you’ll have the error log separate from the debug
log (and the audit log if you choose to use the serial logging format). In a reverse
proxy installation in particular, it makes great sense to keep everything integrated
and easier to find. There may be other good reasons for breaking convention. For
example, if you have more than one hard disk installed and you use the audit logging
feature a lot, you may want to split the I/O operations across the disks.

Configuration Layout
If you have anything but a trivial setup, spreading configuration across several files is necessary
in order to make maintenance easier. There are several ways to do that, and some have more
to do with taste than anything else, but in this section I will describe an approach that is good
enough to start with.

Whatever configuration design I use, there is usually one main entry point, typically named
modsecurity.conf, which I use as a bridge between Apache and ModSecurity. In my bridge

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding ModSecurity to Apache 37

file, I refer to any other ModSecurity files I might have, such as those listed in Table 3.3,
“Configuration files”.

Table 3.3. Configuration files

Filename Description

main.conf Main configuration file

rules-first.conf Rules that need to run first

rules.conf Your principal rule file

rules-last.conf Rules that need to run last

Somewhere in your Apache configuration, use the following line to include the ModSecurity
configuration:

Include /opt/modsecurity/etc/modsecurity.conf

Your main configuration file (modsecurity.conf) may thus contain only the following lines:

<IfModule mod_security2.c>
Include /opt/modsecurity/etc/main.conf
Include /opt/modsecurity/etc/rules-first.conf
Include /opt/modsecurity/etc/rules.conf
Include /opt/modsecurity/etc/rules-last.conf
</IfModule>

The <IfModule> tag is there to ensure that the ModSecurity configuration files are used only
if ModSecurity is active in the web server. This is common practice when configuring any
nonessential Apache modules and allows you to deactivate a module simply by commenting
out the appropriate LoadModule line.

Adding ModSecurity to Apache
As the first step, make Apache aware of ModSecurity, adding the needed components. De-
pending on how you’ve chosen to run ModSecurity, this may translate to adding one or more
lines to your configuration file. This is what the lines may look like:

Load libxml2
LoadFile /usr/lib/libxml2.so
Load Lua
LoadFile /usr/lib/liblua5.1.so
Finally, load ModSecurity
LoadModule security2_module modules/mod_security2.so

Now you just need to tell Apache where to find the configuration:

Include /opt/modsecurity/etc/modsecurity.conf

Property of Girish Motwani <kushalbooks@yahoo.co.in>

38 Chapter 3: Configuration

Powering Up
ModSecurity has a master switch—the SecRuleEngine directive—that allows you to quickly
turn it on and off. This directive will always come first in every configuration. I generally
recommend that you start in detection-only mode, because that way you are sure nothing will
be blocked.

Enable ModSecurity, attaching it to every transaction.
SecRuleEngine DetectionOnly

You will normally want to keep this setting enabled, of course, but there will be cases in which
you won’t be exactly sure whether ModSecurity is doing something it shouldn’t be. Whenever
that happens, you will want to set it to Off, just for a moment or two, until you perform a
request without it running.

The SecRuleEngine directive is context-sensitive (i.e., it works with Apache’s container tags
<VirtualHost>, <Location>, and so on), which means that you are able to control exactly
where ModSecurity runs. You can use this feature to enable ModSecurity only for some sites,
parts of a web site, or even for a single script only. I discuss this feature in detail later.

Will ModSecurity Block in Detection-Only Mode?
You might be expecting ModSecurity to never block when you configure SecRuleEngine with
DetectionOnly, but that behavior is only the case for version 2.6 and later; earlier releases may
behave otherwise. First of all, you should be aware that there are two cases in which Mod-
Security will block without being instructed to do so by a rule, even in detection mode. If
ModSecurity sees more request data than it is configured to handle, it will respond with a
HTTP_REQUEST_ENTITY_TOO_LARGE (413) error code. The three directives that control the request
buffer sizes are: SecRequestLimit, SecRequestNoFilesLimit, and SecResponseBodyLimit.

Prior to ModSecurity 2.5, the only option was to block when the limit was reached. As of version
2.5, you can use SecResponseBodyLimitAction and change how ModSecurity behaves when the
response body limit is reached. If you choose ProcessPartial, ModSecurity will stop accepting
response body data, but it will not block. Starting with version 2.6, you can use SecRequest-
BodyLimit action, which has a similar effect on request body processing. When running in block-
ing mode, the default setting for both directives is Reject; in detection-only mode, the default
setting is ProcessPartial.

Request Body Handling
Requests consist of two parts: the headers part, which is always present, and the body, which
is optional. Use the SecRequestBodyAccess directive to tell ModSecurity to look at request
bodies:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Request Body Handling 39

Allow ModSecurity to access request bodies. If you don't,
ModSecurity won't be able to see any POST parameters
and that's generally not what you want.
SecRequestBodyAccess On

Once this feature is enabled, ModSecurity will not only have access to the content transmitted
in request bodies, but it will also completely buffer them. The buffering is essential for reliable
attack prevention. With buffering in place, your rules have the opportunity to inspect requests
in their entirety, and only after you choose not to block will the requests be allowed through.

The downside of buffering is that, in most cases, it uses RAM for storage, which needs to
be taken into account when ModSecurity is running embedded in a web server. There are
three directives that control how buffering is done. The first two, SecRequestBodyLimit and
SecRequestBodyNoFilesLimit, establish request limits:

Maximum request body size we will accept for buffering.
If you support file uploads then the value given on the
first line has to be as large as the largest file you
want to accept. The second value refers to the size of
data, with files excluded. You want to keep that value
as low as practical.
SecRequestBodyLimit 1310720
SecRequestBodyNoFilesLimit 131072

In the versions prior to 2.5, ModSecurity supported only SecRequestBodyLimit (which estab-
lishes an absolute limit on a request body), but that directive turned out to be impractical in
combination with file uploads. File uploads generally do not use RAM (and thus do not create
an opportunity for a denial of service attack), which means that it is safe to allow such large
requests. Unfortunately, doing so also meant allowing large requests that are not file uploads,
defying the purpose for which the directive was introduced in the first place. The second di-
rective, SecRequestBodyNoFilesLimit, which was introduced in ModSecurity 2.5, calculates
request body sizes slightly differently, ignoring the space taken up by files. In practice, this
means that the maximum allowed request body size will be that specified in the SecRequest-
BodyNoFilesLimit directive, with the exception of file uploads, where the setting in SecRe-
questBodyLimit takes precedence.

Warning
When the directive SecStreamInBodyInspection is enabled, it will attempt to store the
entire raw request body in STREAM_INPUT_BODY. In this case, you lose the protection
of SecRequestBodyNoFilesLimit; the maximum amount of memory consumed for
buffering will be that defined with SecRequestBodyLimit.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

40 Chapter 3: Configuration

Note
In blocking mode, ModSecurity will respond with a 413 (Request Entity Too Large)
response status code when a request body limit is reached. This response code
was chosen to mimic what Apache does in similar circumstances. See SecRequest-
BodyLimitAction for more information.

The third directive that deals with buffering, SecRequestBodyInMemoryLimit, controls how
much of a request body will be stored in RAM, but it only works with file upload (multi-
part/form-data) requests:

Store up to 128 KB of request body data in memory. When
the multipart parser reaches this limit, it will start
using your hard disk for storage. That is generally slow,
but unavoidable.
SecRequestBodyInMemoryLimit 131072

The request bodies that fit within the limit configured with SecRequestBodyInMemoryLimit will
be stored in RAM. The request bodies that are larger will be streamed to disk. This directive
allows you to trade performance (storing request bodies in RAM is fast) for size (the storage
capacity of your hard disk is much bigger than that of your RAM).

Response Body Handling
Similarly to requests, responses consist of headers and a body. Unlike requests, however, most
responses have bodies. Use the SecResponseBodyAccess directive to tell ModSecurity to ob-
serve (and buffer) response bodies:

Allow ModSecurity to access response bodies. We leave
this disabled because most deployments want to focus on
the incoming threats, and leaving this off reduces
memory consumption.
SecResponseBodyAccess Off

I prefer to start with this setting disabled, because many deployments don’t care to look at
what leaves their web servers. Keeping this feature disabled means ModSecurity will use less
RAM and less CPU. If you care about output, however, just change the directive setting to On.

There is a complication with response bodies, because you generally only want to look at the
bodies of some of the responses. Response bodies make the bulk of the traffic on most web
sites, and the majority of that are just static files that don’t have any security relevance in most
cases. The response MIME type is used to distinguish the interesting responses from the ones
that are not. The SecResponseBodyMimeType directive lists the response MIME types you are
interested in.

Which response MIME types do you want to look at? You

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Response Body Handling 41

should adjust the configuration below to catch documents
but avoid static files (e.g., images and archives).
SecResponseBodyMimeType text/plain text/html

Note
To instruct ModSecurity to inspect the response bodies for which the MIME type is
unknown (meaning that it was not specified in the response headers), use the special
string (null) as a parameter to SecResponseBodyMimeType.

You can control the size of a response body buffer using the SecResponseBodyLimit directive:

Buffer response bodies of up to 512 KB in length.
SecResponseBodyLimit 524288

The problem with limiting the size of a response body buffer is that it breaks sites whose pages
are longer than the limit. In ModSecurity 2.5, we introduced the SecResponseBodyLimitAction
directive, which allows ModSecurity users to choose what happens when the limit is reached:

What happens when we encounter a response body larger
than the configured limit? By default, we process what
we have and let the rest through.
SecResponseBodyLimitAction ProcessPartial

If the setting is Reject, the response will be discarded and the transaction interrupted with
a 500 (Internal Server Error) response code. If the setting is ProcessPartial, which I recom-
mend, ModSecurity will process what it has in the buffer and allow the rest through.

At the first thought, it may seem that allowing the processing of partial response bodies creates
a security issue. For the attacker who controls output, it seems easy to create a response that is
long enough to bypass observation by ModSecurity. This is true. However, if you have an at-
tacker with full control of output, it is impossible for any type of monitoring to work reliably.
For example, such an attacker could encrypt output, in which case it will be opaque to Mod-
Security. Response body monitoring works best to detect information leakage, configuration
errors, traces of attacks (successful or not), and data leakage in the cases when an attacker
does not have full control of output.

Other than that, response monitoring is most useful when it comes to preventing the data
leakage that comes from low-level error messages (e.g., database problems). Because such
messages typically appear near the beginning of a page, the ProcessPartial setting will work
just as well to catch them.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

42 Chapter 3: Configuration

Dealing with Response Compression
When deploying ModSecurity in reverse proxy mode with backend servers that support com-
pression, make sure to set the SecDisableBackendCompression directive (available as of v2.6.0) to
On. Doing so will hide the fact the clients support compression from your backend servers, giving
ModSecurity access to uncompressed data. If you don’t disable backend compression, ModSe-
curity will see only the compressed response bodies (as served by the backend web servers). To
continue to use frontend compression, configure mod_deflate in the proxy itself. The SecDis-
ableBackendCompression directive will not interfere with its operation.

If you are using ModSecurity 2.5.10 or earlier, you might sometimes encounter issues in which
ModSecurity sees compressed response data in embedded mode (which should never happen).
Although it is not entirely clear exactly what causes this incompatibility, the problem was fixed
in ModSecurity 2.5.11.

Filesystem Locations
We’ve made the decisions regarding filesystem locations already, so all we need to do now
is translate them into configuration. The following two directives tell ModSecurity where to
create temporary files (SecTmpDir) and where to store persistent data (SecDataDir):

The location where ModSecurity will store temporary files
(for example, when it needs to handle a multipart request
body that is larger than the configured limit). If you don't
specify a location here your system's default will be used.
It is recommended that you specify a location that's private.
SecTmpDir /opt/modsecurity/var/tmp/

The location where ModSecurity will keep its data. This,
too, needs to be a path that other users can't access.
SecDataDir /opt/modsecurity/var/data/

File Uploads
Next, we configure the handling of file uploads. We configure the folder where ModSecurity
will store intercepted files, but we keep this functionality disabled for now. File upload inter-
ception slows down ModSecurity and can potentially consume a lot of disk space, so you’ll
want to enable this functionality only in the places where you really need it.

The location where ModSecurity will store intercepted
uploaded files. This location must be private to ModSecurity.
SecUploadDir /opt/modsecurity/var/upload/

By default, do not intercept (nor store) uploaded files.
SecUploadKeepFiles Off

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Debug Log 43

For now, we also assume that you will not be using external scripts to inspect uploaded files.
That allows us to keep the file permissions more secure, by allowing access only to the apache
user:

Uploaded files are by default created with permissions that
do not allow any other user to access them. You may need to
relax that if you want to interface ModSecurity to an
external program (e.g., an anti-virus).
SecUploadFileMode 0600

Note
You may experience permission-related issues in ModSecurity versions 2.5.10 and
2.5.11 (but not in 2.5.12 and better), in which process umask affects the permissions
of newly created files. Thus, if you set SecUploadFileMode to 0660, but the umask is
022, the resulting permissions will be 0644 (0660 & ~022). If you need to change the
process umask, edit the script that you use to control Apache (e.g., apachectl in my
case). For example, assuming that you wish to set the umask to 002, add umask 002
to the end of the script.

If you are using ModSecurity 2.5.12 or later, you should lower the maximum number of files
that ModSecurity will handle in a request:

Limit the number of files we are willing
to handle in any one request.
SecUploadFileLimit 32

The default value is 100, but that’s usually too much. The issue here is that it is very easy
for an attacker to include many embedded files in a single multipart/form-data request (for
example, hundreds and even thousands), but also that you don’t want ModSecurity to create
that many files on the filesystem (which happens only if the storage or validation of uploaded
files is required), because it would create a denial of service situation.

Debug Log
Debug logging is very useful for troubleshooting, but in production you want to keep it at
minimum, because too much logging will affect the performance. The recommended debug
log level for production is 3, which will duplicate in the debug log what you will also see in
Apache’s error log. This is handy, because the error log will grow at a faster rate and may be
rotated. A copy of the ModSecurity messages in the debug log means that you always have
all the data you need.

Debug log
SecDebugLog /opt/modsecurity/var/log/debug.log
SecDebugLogLevel 3

Property of Girish Motwani <kushalbooks@yahoo.co.in>

44 Chapter 3: Configuration

Audit Log
In ModSecurity terminology, “audit logging” refers to the ability to record complete transac-
tion data. For a typical transaction without a request body, this translates to roughly 1 KB.
Multiply that by the number of requests you are receiving daily and you’ll soon realize that
you want to keep this type of logging to an absolute minimum.

Our default configuration will use audit logging only for the transactions that are relevant,
which means those that have had an error or a warning reported against them. Other possible
values for SecAuditEngine are On (log everything) and Off (log nothing).

Log only what is really necessary.
SecAuditEngine RelevantOnly

In addition, we will also log the transactions with response status codes that indicate a server
error (500–599). You should never see such transactions on an error-free server. The extra data
logged by ModSecurity may help you uncover security issues, or problems of some other type.

Also log requests that cause a server error.
SecAuditLogRelevantStatus ^5

By default, we log all transaction data except response bodies. This assumes that you will
seldom log (as it should be), because response bodies can take up a lot of space.

Log everything we know about a transaction.
SecAuditLogParts ABDEFHIJKZ

Using the same assumption, we choose to use a single file to store all the recorded information.
This is not adequate for the installations that will log a lot and prevents remote logging, but
it is good enough to start with:

Use a single file for logging.
SecAuditLogType Serial
SecAuditLog /opt/modsecurity/var/log/audit.log

As the final step, we will configure the path that will be used in the more scalable audit logging
scheme, called concurrent logging, even though you won’t need to use it just yet:

Specify the path for concurrent audit logging.
SecAuditLogStorageDir /opt/modsecurity/var/audit/

Miscellaneous Options
The directives covered in this section are seldom needed, but having them will allow us to
achieve complete coverage of the ModSecurity configuration options. You’ll also be aware that
they exist and will be able to use them in the rare cases where they are needed.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Default Rule Match Policy 45

The SecArgumentSeparator directive allows you to change the parameter separator used for
the application/x-www-form-urlencoded encoding, which is used to transport all GET para-
meters and most POST parameters.

SecArgumentSeparator &

Virtually all applications use an ampersand for this purpose, but some may not. The HTML
4.01 specification recommends that applications support the use of semicolons as separators
(see section B.2.2 Ampersands in URI attribute values) for convenience. In PHP, for example,
it is possible to use any character as a separator.

The SecCookieFormat directive selects one of the two cookie parsers available in ModSecuri-
ty. Virtually all applications use Netscape-style cookies (sometimes also known as version 0
cookies), so there will be little reason to change this setting:

SecCookieFormat 0

Default Rule Match Policy
As we’re nearing the end of the configuration, you need to decide what you want to happen
when a rule matches. It is recommended that you start without blocking, because that will
allow you to monitor the operation of your installation over a period of time and ensure that
legitimate traffic is not being marked as suspicious:

SecDefaultAction "phase:1,log,auditlog,pass"

This default policy will work for all rules that follow it in the same configuration context. For
more information, turn to the section called “Configuration Contexts” in Chapter 7.

Note
It is possible to write rules that ignore the default policies. If you are using third-
party rule sets and you are not sure how they will behave, consider switching the
entire engine to detection only (using SecRuleEngine). No rule will block when you
do that, regardless of how it was designed to work.

Handling Processing Errors
As you may recall from our earlier discussion, ModSecurity avoids making decisions for you.
It will detect problems as they occur, but it will generally leave to you to deal with them.
In our default configuration, we will have a couple of rules to deal with the situations that
ModSecurity can’t deal with on its own—processing errors.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

46 Chapter 3: Configuration

Note
I am including these rules here because they should be an integral part of every
configuration, but you shouldn’t worry if you don’t understand what it is that they
do exactly. The rules will be explained in detail later in the book.

There are currently three types of processing errors:

• Request and response buffering limits encountered

• Parsing errors

• PCRE limit errors

Normally, you don’t need to be too concerned about encountering buffer limits, because they
often occur during normal operation. If you do want to take them into account when making
decisions, you can use the INBOUND_DATA_ERROR and OUTBOUND_DATA_ERROR variables for request
and response buffering, respectively.

ModSecurity parsers are designed to be as permissive as possible without compromising secu-
rity. They will raise flags when they fail, but also when they encounter something suspicious.
By checking the flags in your rules you detect the processing errors.

Currently the only parsing errors that can happen are the request body processor errors. We
will use two rules to handle those.

The first rule will examine the REQBODY_PROCESSOR_ERROR flag for errors. This flag will be raised
whenever a request body parsing error occurs, regardless of which parser was used for parsing:

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
SecRule REQBODY_PROCESSOR_ERROR "!@eq 0" \
 "phase:2,t:none,log,block,msg:'Failed to parse request body: …
%{REQBODY_PROCESSOR_ERROR_MSG}'"

The second rule is specific to the multipart/form-data parser, which is used to handle file
uploads. If it detects a problem, it produces an error message detailing the flaws:

By default be strict with what you accept in the multipart/form-data
request body. If the rule below proves to be too strict for your
environment consider changing it to detection-only. You are encouraged
not to remove it altogether.
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"phase:2,t:none,log,block,msg:'Multipart request body \
failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Verifying Installation 47

DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_SEMICOLON_MISSING}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IF %{MULTIPART_INVALID_HEADER_FOLDING}, \
FE %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

Errors specific to the multipart parsers should never occur unless an attacker genuinely tries to
bypass ModSecurity by manipulating the request body payload. Some versions of ModSecuri-
ty did have false positives in this area, but the most recent version should be false-positive-free.
If you do encounter such a problem, feel free to post it to the mod-security-users mailing list.
It will mean that you’ve encountered an interesting attacker or a ModSecurity bug.

PCRE limit errors are available starting with ModSecurity version 2.5.12, when the way PCRE
is used was changed to significantly lower the match and recursion limits. SecPcreMatchLimit
and SecPcreMatchLimitRecursion were also added to allow users to control these settings. The
lower the PCRE limits, the more difficult it is to subvert PCRE and the regular expressions to
commit denial of service attacks. As of ModSecurity version 2.5.13, the debug log will identify
rules that have exceeded the limits. For example:

[3] Rule 9905c50 [id "-"][file "/home/ivanr/apache/conf/httpd.conf"][line "525"] - …
Execution error - PCRE limits exceeded (-8): (null).

We will leave the PCRE limits defaults as they are, but add a rule to warn us when they are
exceeded:

SecRule TX:MSC_PCRE_LIMITS_EXCEEDED "@eq 1" \
 "phase:5,t:none,log,pass,msg:'PCRE limits exceeded'"

I’ve used phase 5 for the rule, but if you are really paranoid and think that exceeding PCRE
limits is grounds for blocking, switch to phase 2 (and change pass to something else).

Verifying Installation
After you’re done installing and configuring ModSecurity, it is recommended that you un-
dertake a short exercise to ensure everything is in order:

1. Add a simple blocking rule to detect something in a parameter. For example, the fol-
lowing rule will inspect all parameters for the word MY_UNIQUE_TEST_STRING, respond-
ing with a 503 (Service Unavailable) on a match:

SecRule ARGS MY_UNIQUE_TEST_STRING \
 "phase:1,log,deny,status:503"

2. Restart Apache, using the graceful restart option if your server is in production and
you don’t want any downtime.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

48 Chapter 3: Configuration

3. Send a GET request, using your browser, to the ModSecurity-protected server, in-
cluding the “attack payload” in a parameter (i.e., http://www.example.com/?
test=MY_UNIQUE_TEST_STRING). ModSecurity should block the request.

4. Verify that the message has appeared in both the error log and the debug log, and that
the audit log contains the complete transaction.

5. Submit a POST request that triggers the test rule. With this request, you are testing
whether ModSecurity will see the request body, and whether it will be able to pass the
data in it to your backend after inspection. For this test, in particular, it is important
that you’re testing with the actual application you want to protect. Only doing so will
exercise the entire stack of components that make the application. This test is impor-
tant because of the way Apache modules are written (very little documentation, so
module authors generally employ any approach that “works” for them)—you can gen-
erally never be 100% certain that a third-party module was implemented correctly. For
example, it is possible to write a module that will essentially hijack a request early on
and bypass all the other modules, including ModSecurity. We are doing this test sim-
ply because we don’t want to leave anything to chance.

6. If you want to be really pedantic (I have been, on many occasion—you can never be
too sure), you may want to consider writing a special test script for your application,
which will somehow record the fact that it has been invoked (mine usually writes to a
file in /tmp). By sending a request that includes an attack—which will be intercepted
by ModSecurity—and verifying that the script has not been invoked, you can be com-
pletely sure that blocking works as intended.

7. Remove the test rule and restart Apache again.

8. Finally, and just to be absolutely sure, examine the permissions on all Apache and
ModSecurity locations and verify that they are correct.

You’re done!

Summary
In this chapter, we took the time to look at every configuration option of ModSecurity. Strictly
speaking, we could have left many of the options at their defaults and spent about a tenth of
this time on configuration. But I’ve always found it better to explicitly define every setting,
because with that approach, you end up with the configuration that’s tailored to your needs.
In addition to that, you get to know ModSecurity better, which might prove crucial at some
point in the future.

We didn’t pay much attention to logging in this chapter, opting to configure both the debug log
and the audit log very conservatively. But there’s a wealth of logging options in ModSecurity.
In the next chapter, I’ll discuss logging in detail, and conclude with the configuration topics.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

49

4 Logging
This section covers the logging capabilities of ModSecurity in detail. Logging is a big part of
what ModSecurity does, so it will not surprise you to learn that there are extensive facilities
available for your use.

Debug Log
The debug log is going to be your primary troubleshooting tool, especially initially, while
you’re learning how ModSecurity works. You are likely to spend a lot of time with the debug
log cranked up to level 9, observing why certain things work the way they do. There are two
debug log directives, as you can see in Table 4.1, “Debug log directives”.

Table 4.1. Debug log directives

Directive Description

SecDebugLog Path to the debug log file

SecDebugLogLevel Debug log level

In theory, there are 10 debug log levels, but not all are used. You’ll find the ones that are in
Table 4.2, “Debug log levels”. Messages with levels 1–3 are designed to be meaningful, and are
copied to the Apache’s error log. The higher-level messages are there mostly for troubleshoot-
ing and debugging.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

50 Chapter 4: Logging

Table 4.2. Debug log levels

Debug log level Description

0 No logging

1 Errors (e.g., fatal processing errors, blocked transactions)

2 Warnings (e.g., non-blocking rule matches)

3 Notices (e.g., non-fatal processing errors)

4 Informational

5 Detailed

9 Everything!

You will want to keep the debug log level in production low (either at 3 if you want a copy
of all messages in the debug log, or at 0 if you’re happy with having them only in the error
log). This is because you can expect in excess of 50 debug log messages (each message is an I/
O operation) and at least 7 KB of data for an average transaction. Logging all that for every
single transaction consumes a lot of resources.

This is what a single debug log line looks like:

[18/Aug/2009:08:18:08 +0100] [192.168.3.111/sid#80f4e40][rid#81d0588][/index.html]…
[4] Initialising transaction (txid SopVsH8AAAEAAE8-NB4AAAAD).

The line starts with metadata that is often longer than the message itself: the time, client’s IP
address, internal server ID, internal request ID, request URI, and finally, the debug log level.
The rest of the line is occupied by the message, which is essentially free-form. You will find
many examples of debug log messages throughout this guide, which I’ve used to document
how ModSecurity works.

Debugging in Production
There’s another reason for avoiding extensive debug logging in production, and that’s simply
that it’s very difficult. There’s usually so much data that it sometimes takes you ages to find
the messages pertaining to the transaction you wish to investigate. In spite of the difficulties,
you may occasionally need to debug in production because you can’t reproduce a problem
elsewhere.

Note
ModSecurity 2.5 extended the audit logging functionality by being able to record in
the audit log all the rules that matched. This feature is very helpful, as it minimizes
the need for debugging in production, but it still can’t tell you why some rules didn’t
match.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Debugging in Production 51

One way to make debugging easier is to keep debug logging disabled by default and enable it
only for the part of the site that you wish to debug. You can do this by overriding the default
configuration using the <Location> context directive. While you’re doing that, it may be a
good idea to specify a different debug log file altogether. That way you’ll keep main debug log
file free of your tests.

<Location /myapp/>
 SecDebugLogLevel 9
 SecDebugLog /opt/modsecurity/var/log/troubleshooting.log
</Location>

This approach, although handy, still does not guarantee that the volume of information in
the debug log will be manageable. What you really want is to enable debug logging for the
requests you send. ModSecurity provides a solution for this by allowing a debug log level to
be changed at runtime, on a per-request basis. This is done using the special ctl action that
allows some of the configuration to be updated at runtime.

All you need to do is somehow uniquely identify yourself. In some circumstances, observing
the IP address will be sufficient:

SecRule REMOTE_ADDR "@streq 192.168.1.1" \
 phase:1,nolog,pass,ctl:debugLogLevel=9

Using your IP address won’t work in the cases when you’re hidden by a NAT of some sort, and
share an IP address with a bunch of other users. One straightforward approach is to modify
your browser settings to put a unique identifier in your User-Agent request header. (How
exactly that is done depends on the browser you are using. In Firefox, for example, you can add
a general.useragent.override setting to your configuration, or use one of the many extensions
specifically designed for this purpose.)

SecRule REQUEST_HEADERS:User-Agent YOUR_UNIQUE_ID \
 phase:1,nolog,pass,ctl:debugLogLevel=9

This approach, although easy, has a drawback: all your requests will cause an increase in debug
logging. You may think of an application in terms of dynamic pages, but extensive debug
logging will be enabled for every single embedded object, too. Also, if you’re dealing with an
application that you’re using frequently, you may want to avoid excessive logging.

The most accurate way of dynamically enabling detailed debug logging is to manually indicate,
to ModSecurity, the exact requests on which you want it to increase logging. You can do this
by modifying your User-Agent string on request-by-request basis, using one of the tools that
support request interception and modification. (The Tamper Data extension does that for
Firefox.) Armed with such a tool, you submit your requests in your browser, modify them in
the tool, and then allow them through modified. It’s a bit involved, but a time-saver overall.
And, while you are at it, it is a good idea to make your identifiers similar enough for your rule

Property of Girish Motwani <kushalbooks@yahoo.co.in>

52 Chapter 4: Logging

to always detect them, but different enough to allow you to use a search function to quickly
find the exact request in a file with thousands.

Audit Log
It is a little-known fact that I originally started to work on ModSecurity because I was frus-
trated with not being able to log full HTTP transaction data. The audit log, which does just
that, was one of the first features implemented.

Table 4.3. Audit log directives

Directive Description

SecAuditEngine Controls the audit log engine; possible values On, Off, or RelevantOnly

SecAuditLog Path to an audit log file

SecAuditLog2 Path to another audit log file (copy)

SecAuditLogParts Specifies which part of a transaction will be logged

SecAuditLogRelevantStatus Specifies which response statuses will be considered relevant

SecAuditLogStorageDir Path there concurrent audit log files will be stored

SecAuditLogType Specifies the type of audit log to use: Serial or Concurrent

A typical audit log entry (short, GET request without a body and no logging of the response
body) consumes around 1.3 KB. Requests with bodies will increase the amount of data that
needs to be logged, as well as the logging of response bodies.

Logically, each audit log entry is a single file. When serial audit logging is used, all entries will
be placed within one file, but with concurrent audit logging, one file per entry is used. Looking
at a single audit log entry, you’ll find that it consists of multiple independent segments (parts):

--6b253045-A--
...
--6b253045-B--
...
--6b253045-C--
...
--6b253045-F--
...
--6b253045-E--
...
--6b253045-H--
...
--6b253045-Z--

A segment begins with a boundary and ends when the next segment begins. The only excep-
tion is the terminating segment (Z), which consists only of the boundary. The idea behind

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Audit Log Entry Example 53

the use of multiple segments is to allow each audit log entry to contain potentially different
information. Only the parts A and Z are mandatory; the use of the other parts is controlled
with the SecAuditLogParts directive. Table 4.4, “Audit log parts”contains the list of all audit
log parts, along with a description of their purpose.

Table 4.4. Audit log parts

Part letter Description

A Audit log header (mandatory)

B Request headers

C Request body

D Reserved

E Response body

F Response headers

G Reserved

H Audit log trailer, which contains additional data

I Compact request body alternative (to part C), which excludes files

J Information on uploaded files (available as of version 2.6.0)

K Contains a list of all rules that matched for the transaction

Z Final boundary (mandatory)

Audit Log Entry Example
Every audit log entry begins with part A, which contains the basic information about the trans-
action: time, unique ID, source IP address, source port, destination IP address, and destina-
tion port:

--6b253045-A--
[18/Aug/2009:08:25:15 +0100] SopXW38EAAE9YbLQ 192.168.3.1 2387 192.168.3.111 8080

Part B contains the request headers and nothing else:

--6b253045-B--
POST /index.html?a=test HTTP/1.1
Host: 192.168.3.111:8080
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Property of Girish Motwani <kushalbooks@yahoo.co.in>

54 Chapter 4: Logging

Referer: http://192.168.3.111:8080/index.html?a=test
Content-Type: application/x-www-form-urlencoded
Content-Length: 6

Part C contains the raw request body, typically that of a POST request:

--6b253045-C--
b=test

Part F contains the response headers:

--6b253045-F--
HTTP/1.1 200 OK
Last-Modified: Tue, 18 Aug 2009 07:17:44 GMT
ETag: "6eccf-99-4716550995f20"
Accept-Ranges: bytes
Content-Length: 159
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html

Part E contains the response body:

--6b253045-E--
<html><body><h1>It works!</h1></body></html>

<form action="index.html?a=test" method="POST">
<textarea name="b">test</textarea>
<input type=submit>
</form>

The final part, H, contains additional transaction information.

--6b253045-H--
Stopwatch: 1250580315933960 1902 (551* 580 978)
Response-Body-Transformed: Dechunked
Producer: ModSecurity for Apache/2.5.9 (http://www.modsecurity.org/).
Server: Apache/2.2.11 (Unix) DAV/2

Part K contains a list of rules that matched in a transaction. It is not unusual for this part to
be empty, but if you have a complex rule set, it may show quite a few rules. Audit logs that
record transactions on which there were warnings, or those that were blocked, will contain at
least one rule here. In this example you’ll find a rule that emits a warning on every request:

--6b253045-K--
SecAction "phase:2,auditlog,log,pass,msg:'Matching test'"

Every audit log file ends with the terminating boundary, which is part Z:

--6b253045-Z--

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Concurrent Audit Log 55

Concurrent Audit Log
Initially, ModSecurity supported only the serial audit logging format. Concurrent logging was
introduced to address two issues:

• Serial logging is only adequate for moderate use, because only one audit log entry can
be written at any one time. Serial logging is fast (logs are written at the end of every
transaction, all in one go) but it does not scale well. In the extreme, a web server per-
forming full transaction logging practically processes only one request at any one time.

• Real-time audit log centralization requires individual audit log entries to be deleted
once they are dealt with, which is impossible to do when all alerts are stored in a single
file.

Concurrent audit logging changes the operation of ModSecurity in two aspects. To observe the
changes, switch to concurrent logging without activating mlogc by changing SecAuditLogType
to Concurrent (don’t forget to restart Apache).

First, as expected, each audit log entry will be stored in a separate file. The files will not be
created directly in the folder specified by SecAuditLogStorageDir, but in an elaborate structure
of subfolders whose names will be constructed from the current date and time:

./20090822

./20090822/20090822-1324

./20090822/20090822-1324/20090822-132420-SojdH8AAQEAAAugAQAAAAAA

./20090822/20090822-1324/20090822-132420-SojdH8AAQEAAAugAQEAAAAA

The purpose of the scheme is to prevent too many files from being created within one direc-
tory; many filesystems have limits that can be relatively quickly reached on a busy web serv-
er. The first two parts in each filename are based on time (YYYYMMDD and HHMMSS). The third
parameter is the unique transaction ID.

In addition to each entry getting its own file, the format of the main audit log file will change
when concurrent logging is activated. The file that previously stored the entries themselves
will now be used as a record of all generated audit log files.

192.168.3.130 192.168.3.1 - - [22/Aug/2009:13:24:20 +0100] "GET / HTTP/1.1" 200 …
56 "-" "-" SojdH8AAQEAAAugAQAAAAAA "-" …
/20090822/20090822-1324/20090822-132420-SojdH8AAQEAAAugAQAAAAAA 0 1248 …
md5:8b097f4f880852e179e7b63b68a7fc92
192.168.3.130 192.168.3.1 - - [22/Aug/2009:13:24:20 +0100] "GET /favicon.ico …
HTTP/1.1" 404 267 "-" "-" SojdH8AAQEAAAugAQEAAAAA "-" …
/20090822/20090822-1324/20090822-132420-SojdH8AAQEAAAugAQEAAAAA 0 1226 …
md5:c76740f076a3cb759d62fb610ab39342

The index file is similar in principle to a web server access log. Each line describes one trans-
action, duplicating some of the information already available in audit log entries. The purpose
of the index file is two-fold:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

56 Chapter 4: Logging

• The first part, which duplicates some of the information available in audit logs, serves
as a record of everything that you have recorded so that you can easily search through
it.

• The second part tells you where an audit log entry is stored (e.g.,
/20090822/20090822-1324/20090822-132420-SojdH8AAQEAAAugAQEAAAAA), where it be-
gins within that file (always zero, because this feature is not used), how long it is, and
gives you its MD5 hash (useful to verify integrity).

When real-time audit log centralization is used, this information is not written to a file. In-
stead, it is written to a pipe, which means that it is sent directly to another process, which
deals with the information immediately. You will see how that works in the next section.

Remote Logging
ModSecurity comes with a tool called mlogc (short for ModSecurity Log Collector), which
can be used to transport audit logs in real time to a remote logging server. This tool has the
following characteristics:

Secure
The communication path between your ModSecurity sensors and the remote logging
server is secured with SSL and authenticated using HTTP Basic Authentication.

Efficient
Remote logging is implemented with multiple threads of execution, which allow for
many alerts to be handled in parallel. Existing HTTP connections are reused.

Reliable
An audit log entry will be deleted from the sensor only once its safe receipt is acknowl-
edged by the logging server.

Buffered
The mlogc tool maintains its own audit entry queue, which has two benefits. First, if
the logging server is not available the entries will be preserved, and submitted once the
server comes back online. Second, mlogc controls the rate at which audit log entries are
submitted, meaning that a burst of activity on a sensor will not result in an uncontrolled
burst of activity on the remote logging server.

Note
Remote logging uses a simple but very effective protocol based on HTTP. You’ll find
it documented in the section called “Remote Logging Protocol” in Chapter 20.

If you’ve followed my installation instructions, you will have mlogc compiled and sitting in
your bin/ folder. To proceed, you will need to configure it, then add it to the ModSecurity
configuration.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Configuring Remote Logging 57

How Remote Logging Works
Remote logging in ModSecurity is implemented through an elaborate scheme designed to min-
imize the possibility of data loss. Here is how it’s done:

1. ModSecurity processes a transaction and creates an audit log entry file on disk, as ex-
plained in the section called “Concurrent Audit Log”.

2. ModSecurity then notifies the mlogc tool, which runs in a separate process. The
notification contains enough information to locate the audit log entry file on disk.

3. The mlogc tool adds the audit log entry information to the in-memory queue and to its
transaction log (file mlogc-transaction.log by default).

4. One of many worker threads that run within mlogc takes the audit log entry and submits
it to a remote logging server. The entry is then removed from the in-memory queue and
the transaction log is notified.

5. A periodic checkpoint operation, initiated by mlogc, writes the in-memory queue to the
disk (file mlogc-queue.log by default) and erases the transaction log.

If mlogc crashes, Apache will restart it automatically. When an unclean shutdown is detected,
mlogc will reconstruct the entry queue using the last known good point (the on-disk queue) and
the record of all events since the moment the on-disk queue was created, which are stored in
the transaction log.

Configuring Remote Logging
The mlogc configuration file is similar to that of Apache, only simpler. First we need to tell
mlogc where its “home” is, which is where it will create its log files. Log files are very important,
because—as it is Apache that starts mlogc and ModSecurity that talks to it—we never interact
with mlogc directly. We’ll need to look in the log files for clues in case of problems.

Specify the folder where the logs will be created
CollectorRoot /opt/modsecurity/var/log

Define what the log files will be called. You probably
won't ever change the names, but mlogc requires you
to define it.
ErrorLog mlogc-error.log

The error log level is a number between 0 and 5, with
level 3 recommended for production (5 for troubleshooting).
ErrorLogLevel 3

Specify the names of the data files. Similar comment as
above: you won't want to change these, but they are required.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

58 Chapter 4: Logging

TransactionLog mlogc-transaction.log
QueuePath mlogc-queue.log
LockFile mlogc.lck

Then we tell it where to find audit log entries. The value given to LogStorageDir should be the
same as the one you provided to ModSecurity’s SecAuditLogStorageDir:

Where are the audit log entries created by ModSecurity?
LogStorageDir /opt/modsecurity/var/audit

Next, we need to tell mlogc where to submit the audit log entries. We identify a remote server
with a URL and credentials:

Remote logging server details.
ConsoleURI "https://REMOTE_ADDRESS:8888/rpc/auditLogReceiver"
SensorUsername "USERNAME"
SensorPassword "PASSWORD"

The remaining configuration directives aren’t required, but it’s always a good idea to explicitly
configure your programs, rather than let them use their defaults:

How many parallel connections to use to talk to the server,
and how much to wait (in milliseconds) between submissions.
These two directives are used to control the rate at which
audit log entries are submitted.
MaxConnections 10
TransactionDelay 50

How many entries is a single thread allowed to process
before it must shut down.
MaxWorkerRequests 1000

How long to wait at startup before really starting.
StartupDelay 5000

Checkpoints are periods when the entries from the transaction
log (which is written to sequentially) are consolidated with
the entries in the main queue.
CheckpointInterval 15

Back-off time after goes away or responds with a fatal error.
ServerErrorTimeout 60

Note
The mlogc tool will take audit log entries created by ModSecurity, submit them to a
remote logging server and delete them from disk, but it will leave the empty folders
(that were used to store the entries) behind. You will have to remove them yourself,
either manually or with a script.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Activating Remote Logging 59

Activating Remote Logging
You will need to make two changes to your default configuration. First you need to switch to
concurrent audit logging, because that’s the only way mlogc can work:

SecAuditLogType Concurrent

Next you need to activate mlogc, which is done using the piped logging feature of Apache:

SecAuditLog "|/opt/modsecurity/bin/mlogc /opt/modsecurity/etc/mlogc.conf"

The pipe character at the beginning of the line tells Apache to treat what follows as a command
line. As a result, whenever you start Apache from now on, it will start a copy of mlogc in turn,
and keep it running in parallel, leaving a one-way communication channel that will be used
by ModSecurity to inform mlogc of every new audit log entry it creates.

Your complete configuration should look like this now:

SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus ^5
SecAuditLogParts ABDEFHIJKZ
SecAuditLogType Concurrent
SecAuditLog "|/opt/modsecurity/bin/mlogc /opt/modsecurity/etc/mlogc.conf"
SecAuditLogStorageDir /opt/modsecurity/var/audit/

If you restart Apache now, you should see mlogc running:

USER PID COMMAND
root 11845 /usr/sbin/apache2 -k start
root 11846 /opt/modsecurity/bin/mlogc /opt/modsecurity/etc/mlogc.conf
apache 11847 /usr/sbin/apache2 -k start
apache 11848 /usr/sbin/apache2 -k start
apache 11849 /usr/sbin/apache2 -k start
apache 11850 /usr/sbin/apache2 -k start
apache 11851 /usr/sbin/apache2 -k start

If you go to the log/ folder, you should see two new log files:

dev:/opt/modsecurity/var/log# l
total 1684
drwx------ 2 root root 4096 2009-08-20 10:31 .
drwxr-x--- 7 root apache 4096 2009-08-18 20:01 ..
-rw-r----- 1 root root 926530 2009-08-20 08:09 audit.log
-rw-r----- 1 root root 771903 2009-08-20 08:09 debug.log
-rw-r--r-- 1 root root 696 2009-08-20 10:33 mlogc-error.log
-rw-r--r-- 1 root root 0 2009-08-20 10:31 mlogc-transaction.log

If you look at the mlogc-error.log file, there will be signs of minimal activity (the timestamps
from the beginning of every line were removed for clarity):

[3] [11893/0] Configuring ModSecurity Audit Log Collector 2.5.10-dev2.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

60 Chapter 4: Logging

[3] [11893/0] Delaying execution for 5000ms.
[3] [11895/0] Configuring ModSecurity Audit Log Collector 2.5.10-dev2.
[3] [11895/0] Delaying execution for 5000ms.
[3] [11893/0] Queue file not found. New one will be created.
[3] [11893/0] Caught SIGTERM, shutting down.
[3] [11893/0] ModSecurity Audit Log Collector 2.5.10-dev2 terminating normally.
[3] [11895/0] Queue file not found. New one will be created.

It is normal for two copies of mlogc to have run, because that’s how Apache treats all piped
logging programs. It starts two (one while it’s checking configuration), but leaves only one
running. The second token on every line in the example is the combination of process ID and
thread ID. Thus you can see how there are two processes running at the same time (PID 11893
and PID 11895). Because only one program can handle the data files, mlogc is designed to wait
for a while before it does anything. Basically, if it still lives after the delay, that means it’s the
copy that’s meant to do something.

What happens if you make an error in the configuration file, which is preventing mlogc from
working properly? As previously discussed, mlogc can’t just respond to you on the command
line, so it will do the only thing it can. It will report the problem and shut down. (Don’t be
surprised if Apache continues with attempts to start it. That’s what Apache does with piped
logging programs.)

If you make a mistake in defining the error log, you may actually get an error message in
response to the attempt to start Apache. Following is the error message you’d get if you left
ErrorLog undefined:

dev:/opt/modsecurity/etc# apache2ctl start
[1] [12026/0] Failed to open the error log (null): Bad address
[3] [12026/0] ModSecurity Audit Log Collector 2.5.10-dev2 terminating with error 1

If mlogc managed to open its error log, it will do the expected and write all error messages
there. For example:

[1] [11985/0] QueuePath not defined in the configuration file.
[3] [11985/0] ModSecurity Audit Log Collector 2.5.10-dev2 terminating with error 1

At this point, it is a good idea to delete the serial audit log file audit.log, or store it elsewhere.
Having switched to concurrent logging, that file won’t be updated anymore and it will only
confuse you.

Troubleshooting Remote Logging
Assuming default logging configuration (level 3), a single audit log entry handled by mlogc
will produce one line in the log file:

[3] [2435/693078] Entry completed (0.080 seconds, 9927 bytes): …
SsHOykMXI18AAAmnIgAAAABC

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Troubleshooting Remote Logging 61

That’s basically all you need to know—that an entry has been safely transmitted to the in-
tended destination. The status codes 200 and 409 are taken to mean that an entry has been
successfully processed. The response code 200 indicates that there were no problems with the
entry; the response code 409 indicates that the entry is faulty, but that it has been accepted by
the server (and that mlogc should delete it and move on).

You will get more information when something gets wrong, of course. For example, you will
see the following message whenever your logging server goes down:

[2] [2435/693078] Flagging server as errored after failure to submit entry …
SsHPN0MXI18AAAmLHucAAAAG (cURL code 7): couldn't connect to host

The message will appear on the first failed delivery, and then once every minute until the
server becomes operational. This is because mlogc will shut down its operation for a short
period whenever something unusual happens with the server. Only one thread of operation
will continue to work to probe the server, with processing returning to full speed once the
server recovers. You’ll get the following information in the log:

[3] [2435/693078] Clearing the server error flag after successful entry …
submission: SsHPN0MXI18AAAmLHucAAAAG
[3] [2435/693078] Entry completed (0.684 seconds, 9927 bytes): …
SsHPN0MXI18AAAmLHucAAAAG

Going back to the error message, the first part tells you that there’s a problem with the server;
the second part tells you what the problem is. In the previous case, the problem was “couldn’t
connect to host”, which means the server is down.

Table 4.5. Common remote logging problems

Error message Description

couldn’t connect to host The server could not be reached. It probably means that the server itself is down,
but it could also indicate a network issue. You can investigate the cURL return
code to determine the exact cause of the problem.

Possible SSL negotiation error Most commonly, this message will mean that you configured mlogc to submit
over plain-text, but the remote server uses SSL. Make sure the ConsoleURI para-
meter starts with “https://”.

Unauthorized The credentials are incorrect. Check the SensorUsername and SensorPassword
parameters.

For input string: “0, 0” A remote server can indicate an internal error using any response status code
other than 200 and 409, but such errors are treated as transient. ModSecuri-
ty Community Console has a long-standing problem where it responds with a
500 code to an audit log entry that is invalid in some way. The use of the 500 re-
sponse code makes mlogc pause and attempt to deliver again, only to see the
Console fail again. The process continues indefinitely and the only solution at the
moment is to track down the offending audit log entry on the sensor and manual-
ly delete it.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

62 Chapter 4: Logging

If you still can’t resolve the problem, I suggest that you increase the mlogc error log level from 3
(NOTICE) to 5 (DEBUG2), restart Apache (graceful will do), and try to uncover more information
that would point to a solution. Actually, I advise you to perform this exercise even before
you encounter a problem, because an analysis of the detailed log output will give you a better
understanding of how mlogc works.

File Upload Interception
File upload interception is a special form of logging, in which the files being uploaded to your
server are intercepted, inspected, and stored, and all that before they are seen by an applica-
tion. The directives related to this feature are in Table 4.6, “File upload directives”, but you’ve
already seen them all in the section called “File Uploads”.

Table 4.6. File upload directives

Directive Description

SecUploadDir Specifies the location where intercepted files will be stored

SecUploadFileMode Specifies the permissions that will be used for the stored files

SecUploadKeepFiles Specifies whether to store the uploaded files (On, Off, or RelevantOnly)

Storing Files
Assuming the default configuration suggested in this guide, you only need to change the set-
ting of the SecUploadKeepFiles directive to On to start collecting uploaded files. If, after a few
file upload requests, you examine /opt/modsecurity/var/upload, you’ll find files with names
similar to these:

20090818-164623-SorMz38AAAEAAFG2AOAAAAAA-file-ok0c4T
20090818-164713-SorNAX8AAAEAAFG4AbUAAAAC-file-2ef1eC

You can probably tell that the first two parts of a filename are based on the time of upload, then
follows the unique transaction ID, the -file- part that is always the same, and a random string
of characters at the end. ModSecurity uses this algorithm to generate file names primarily
to avoid filename collision and support the storage of a large number of files in a folder. In
addition, avoiding the use of a user-supplied file name prevents a potential attacker from
placing a file with a known name on a server.

When you store a file like this, it is just a file and it doesn’t tell you anything about the attacker.
Thus, for the files to be useful, you also need to preserve the corresponding audit log entries,
which will contain the rest of the information.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Inspecting Files 63

Note
Storage of intercepted files can potentially consume a lot of disk space. If you’re doing
it, you should at least ensure that the filesystem that you’re using for storage is not
the root filesystem—you don’t want an overflow to kill your entire server.

Inspecting Files
For most people, a more reasonable SecUploadKeepFiles setting is RelevantOnly, which en-
ables the storage of only the files that have failed inspection in some way. For this setting to
make sense, you need to have at least one external inspection script along with a rule that
invokes it.

A file inspection rule is rather simple:

SecRule FILES_TMPNAMES "@inspectFile /opt/modsecurity/bin/file-inspect.pl" \
 phase:2,t:none,log,block

This example rule will invoke the script /opt/modsecurity/bin/file-inspect.pl for every
uploaded file. The script will be given the location of the temporary file as its first and only
parameter. It can do whatever it wants with the contents of the file, but it is expected to return
a single line of output that consists of a verdict (1 if everything is in order and 0 for a fault),
followed by an error message. For example:

1 OK

Or:

0 Error

Following are the debug log lines produced by the inspection file:

[4] Recipe: Invoking rule 99e6538; [file "/opt/modsecurity/etc/rules.conf"] …
[line "3"].
[5] Rule 99e6538: SecRule "FILES_TMPNAMES" "@inspectFile …
/opt/modsecurity/bin/file-inspect.pl" "phase:2,auditlog,t:none,log,block"
[4] Transformation completed in 2 usec.
[4] Executing operator "inspectFile" with param …
"/opt/modsecurity/bin/file-inspect.pl" against FILES_TMPNAMES:f.
[9] Target value: …
"/opt/modsecurity/var/tmp//20090819-181304-SowyoH8AAQEAACW1AIo-file-ZPtFAq"
[4] Executing /opt/modsecurity/bin/file-inspect.pl to inspect …
/opt/modsecurity/var/tmp//20090819-181304-SowyoH8AAQEAACW1AIoAAAAA-file-ZPtFAq.
[9] Exec: /opt/modsecurity/bin/file-inspect.pl
[4] Exec: First line from script output: "1 OK"
[4] Operator completed in 6969 usec.
[4] Rule returned 0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

64 Chapter 4: Logging

If an error occurs, for example if you make a mistake in the name of the script, you’ll get an
error message that looks similar to this one:

[9] Exec: /opt/modsecurity/bin/file_inspect.pl
[1] Exec: Execution failed while reading output: …
/opt/modsecurity/bin/file_inspect.pl (End of file found)

Tip
If you write your inspection scripts in Lua, ModSecurity will be able to execute them
directly using an internal Lua engine. The internal execution will not only be faster,
but from the Lua scripts you will be able to access the complete transaction context
(which is not available to any external programs).

Integrating with ClamAV
ClamAV (http://www.clamav.net) is a popular open source anti-virus program. If you have
it installed, the following script will allow you to utilize it to scan files from ModSecurity:

#!/usr/bin/perl

$CLAMSCAN = "/usr/bin/clamscan";

if (@ARGV != 1) {
 print "Usage: modsec-clamscan.pl FILENAME\n";
 exit;
}

my ($FILE) = @ARGV;

$cmd = "$CLAMSCAN --stdout --disable-summary $FILE";
$input = `$cmd`;
$input =~ m/^(.+)/;
$error_message = $1;

$output = "0 Unable to parse clamscan output";

if ($error_message =~ m/: Empty file\.$/) {
 $output = "1 empty file";
}
elsif ($error_message =~ m/: (.+) ERROR$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: (.+) FOUND$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: OK$/) {
 $output = "1 clamscan: OK";
}

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Integrating with ClamAV 65

print "$output\n";

Note
If you need a file to test with, you can download one from http://www.eicar.org/
anti_virus_test_file.htm. The files at this location contain a test signature that will
be picked up by ClamAV.

The error message from the integration script will return either the result of the inspection
of the file or an error message if the inspection process failed. Following is an example that
shows a successful detection of a “virus”:

[9] Exec: /opt/modsecurity/bin/modsec-clamscan.pl
[4] Exec: First line from script output: "0 clamscan: Eicar-Test-Signature"
[4] Operator completed in 2137466 usec.
[2] Warning. File …
"/opt/modsecurity/var/tmp//20090819-181833-Sowz6X8AAQEAACXQAWAAAAAB-file-logg59" …
rejected by the approver script "/opt/modsecurity/bin/modsec-clamscan.pl": 0 …
clamscan: Eicar-Test-Signature [file "/opt/modsecurity/etc/rules.conf"] [line "3"]

If you look carefully at the example output, you’ll see that the inspection took in excess of
2 seconds. This is not unusual (even for my slow virtual server), because we’re creating a
new instance of the ClamAV engine for every inspection. The scanning alone is fast, but the
initialization takes considerable time. A more efficient method would be to use the ClamAV
daemon (e.g., the clamav-daemon package on Debian) for inspection. In this case, the daemon
is running all the time, and the script is only informing it that it needs to inspect a file.

Assuming you’ve followed the recommendation for the file permissions settings given in the
section called “Folder Locations”, this is what you need to do:

1. Change the name of the ClamAV script from clamscan to clamdscan (note the added d
in the filename).

2. Add the ClamAV user (typically clamav) to the group apache.

3. Relax the default file permissions used for uploaded files to allow group read, by
changing SecUploadFileMode from 0600 to 0640.

An examination of the logs after the change in the configuration will tell you that there’s been
a significant improvement—from seconds to milliseconds:

[9] Exec: /opt/modsecurity/bin/modsec-clamscan.pl
[4] Exec: First line from script output: "0 clamscan: Eicar-Test-Signature"
[4] Operator completed in 13329 usec.
[2] Warning. File …
"/opt/modsecurity/var/tmp//20090819-182404-Sow1NH8AAQEAACiEAIcAAAAA-file-AMzbgK" …
rejected by the approver script "/opt/modsecurity/bin/modsec-clamscan.pl": 0 …
clamscan: Eicar-Test-Signature [file "/opt/modsecurity/etc/rules.conf"] [line "3"]

Property of Girish Motwani <kushalbooks@yahoo.co.in>

66 Chapter 4: Logging

Advanced Logging Configuration
By now you have seen how you have many facilities you can use to configure logging to work
exactly as you need it. The facilities can be grouped into four categories:

Static logging configuration
The various audit logging configuration directives establish the default (or static) au-
dit logging configuration. You should use this type of configuration to establish what
you want to happen in most cases. You should then use the remaining configuration
mechanisms (listed next) to create exceptions to handle edge cases.

Setting of the relevant flag on rule matches
Every rule match, unless suppressed, increments the transaction’s relevant flag. This
handy feature, designed to work with the RelevantOnly setting of SecAuditEngine, al-
lows you to trigger transaction logging when something unusual happens.

Per-rule logging suggestions
Rule matching and the actions auditlog and noauditlog do not control logging directly.
They should be viewed as mere suggestions—it is up to the engine to decide whether
to log a transaction. They are also ephemeral, affecting only the rules with which they
are associated. They will be forgotten as the processing moves onto the next rule.

Dynamic logging configuration
Rules can make logging decisions that affect entire decisions (through the ctl action),
but that functionality should not be used lightly. Most rules should be concerned only
with event generation, restricting their decisions to the suggestions mentioned in the
previous. The ability to affect transaction logging should be used by system rules placed
in phase 5 and written specifically for the purpose of logging control.

Increasing Logging from a Rule
Using the SecAuditLogParts directive, you will configure exactly what parts (how much in-
formation) you want logged for every transaction, but one setting will not be adequate in all
cases. For example, most configurations will not be logging response bodies, but that infor-
mation is often required to determine whether certain types of attack (XSS, for example) were
successful.

The following rule will detect only simple XSS attacks, but when it does, it will cause the
transaction’s response body to be recorded:

SecRule ARGS <script> phase:2,log,block,ctl:auditLogParts=+E

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Dynamically Altering Logging Configuration 67

Dynamically Altering Logging Configuration
The feature discussed in the previous section is very useful, but you may not always like the fact
that some rules are changing what you’re logging. I know I would not. Luckily, it’s a problem
that can be resolved with an addition of a phase 5 rule that resets the logged audit log parts:

SecAction phase:5,nolog,pass,ctl:auditLogParts=ABCDFGH

You can then decide on your own whether the logging of part E is justified. If you are using
full audit logging in particular, you will need to manually increase the amount you log per
transaction. The HIGHEST_SEVERITY variable, which contains the highest severity of the rules
that matched during a transaction, is particularly useful:

SecRule HIGHEST_SEVERITY "@le 2" phase:5,nolog,pass,ctl:auditLogParts=+E

Removing Sensitive Data from Audit Logs
Most web application programmers are taught to always use POST methods for the trans-
actions that contain sensitive data. After all it is well known that request bodies are never
logged, meaning that the sensitive data will never be logged, either. ModSecurity changes this
situation, because it allows for full transaction logging. To deal with the sensitive data that
may find its way into the logs, ModSecurity uses the sanitation actions sanitiseArg, sanitis-
eRequestHeader and sanitiseResponseHeader, and sanitiseMatched. You basically just need
to tell ModSecurity which elements of a transaction you want removed and it will remove
them for you, replacing their values in the log with asterisks. The first three actions all require
parameters that you will typically know at configuration time, which means that you will in-
voke them unconditionally with SecAction. Sanitation works when invoked from any phase,
but you should always use phase 5, which is designed for this type of activity.

Use sanitiseArg to prevent the logging of the parameters whose names you know. For exam-
ple, let’s assume that you have an application that uses the parameters password, oldPassword,
and newPassword to transmit, well, passwords. This is what you’ll do:

SecAction "phase:5,nolog,pass,\
 sanitiseArg:password,\
 sanitiseArg:oldPassword,\
 sanitiseArg:newPassword"

Similarly, use sanitiseRequestHeader and sanitiseResponseHeader to remove the contents of
the headers whose names you know. For example, if you have an application that uses HTTP
Basic Authentication, you will need the following rule to prevent the passwords from being
logged:

SecAction "phase:5,nolog,pass,\

Property of Girish Motwani <kushalbooks@yahoo.co.in>

68 Chapter 4: Logging

 sanitiseRequestHeader:Authorization"

The last action, sanitiseMatched, is used when you need to sanitize a parameter whose name
you don’t know in advance. My first example will sanitize the contents of every parameter
that has the word password in the name:

SecRule ARGS_NAMES password "phase:5,nolog,pass,\
 sanitiseMatched"

In the following example, we look for anything that resembles a credit card number and then
sanitize it:

SecRule ARGS "@verifyCC \d{13,16}" "phase:5,nolog,pass,\
 sanitiseMatched"

Finally, the sanitiseMatchedBytes action, available as of ModSecurity version 2.6.0, can re-
move only the parts of input that contain sensitive information and not entire parameters.
This action works only in conjunction with operators that are based on regular expressions
(e.g., @rx, @verifyCC, etc.), and further requires the capture action to be specified.

SecRule ARGS "@verifyCC \d{13,16}" "phase:5,nolog,pass,\
 capture,sanitiseMatchedBytes"

When further parameters are specified, this new operator can even leave parts of the sensitive
data in the log. In the following example, we leave the first four digits and the last four digits
of a credit card number:

SecRule ARGS "@verifyCC \d{13,16}" "phase:5,nolog,pass,\
 capture,sanitiseMatchedBytes:4/4"

Selective Audit Logging
Although full transaction logging (the logging of every single byte of every single transaction)
sounds good in theory, in practice it is very difficult to use, because it slows down your sever
and requires huge amounts of storage space. There are ways to get some of the same benefits
for a fraction of cost by using partial full logging on demand.

The trick is to tie in logging to the tracking of IP addresses, users, or sessions. By default you
will log only what is relevant, but when you spot something suspicious coming from (for
example) an IP address, you may change your logging configuration to turn on full logging
for the offending IP address only. Here’s how.

First you need to set up IP address tracking. You do this only once for all your rules, so it
should usually be part of your main configuration:

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 69

Now you need to add a phase rule that will trigger logging when something else happens. In
the following case, we want to start logging everything coming from an IP address after a single
rule match. To achieve that, we set the flag ip.logflag for up to one hour (3600 seconds):

SecRule HIGHEST_SEVERITY "@gt 0" \
 phase:5,nolog,pass,setvar:ip.logflag=1,expirevar:ip.logflag=3600

Finally, we add a rule that detects the flag and forces logging:

SecRule IP:logflag "@gt 0" \
 phase:5,nolog,pass,ctl:auditLogEngine=On

Summary
This chapter, along with the two before it, covered the configuration of ModSecurity. You
learned how to install ModSecurity and how to configure it, with special attention given to
the logging facilities. Logging deserved its own chapter, because configuring a tool to perform
certain actions is often only half of the entire story, with the other half consisting of tracking
exactly what happened and why. Further, remote logging is a gateway to other systems, which
may assist you in managing ModSecurity.

The next three chapters discuss a new topic: rule writing. You’ll first read an overview of the
entire rule language, followed by a tutorial in rule writing and then by a higher-level discus-
sion on how to place ModSecurity configuration within Apache’s own directives. Finally, the
interesting bits are here!

Property of Girish Motwani <kushalbooks@yahoo.co.in>

70

Property of Girish Motwani <kushalbooks@yahoo.co.in>

71

5 Rule Language Overview
ModSecurity doesn’t do anything implicitly, which is why it has the rule language to enable
you to implement the inspection logic and policies exactly as you want them. The rule lan-
guage may initially appear very simple to you—and it is simple—but it is amazing how pow-
erful and flexible it actually is.

The rule language is implemented using 9 directives, which are listed in Table 5.1, “Rule lan-
guage directives”.

Table 5.1. Rule language directives

Directive Description

SecAction Performs an unconditional action. This directive is essentially a rule that always
matches.

SecDefaultAction Specifies the default action list, which will be used in the rules that follow.

SecMarker Creates a marker that can be used in conjunction with the skipAfter action. A
marker creates a rule that does nothing, but has an ID assigned to it.

SecRule Creates a rule.

SecRuleInheritance Controls whether rules are inherited in a child configuration context.

SecRuleRemoveById Removes the rule with the given ID.

SecRuleRemoveByMsg Removes the rule whose message matches the given regular expression.

SecRuleScript Creates a rule implemented using Lua.

SecRuleUpdateActionById Updates the action list of the rule with the given ID.

SecRuleUpdateTargetById Updates the target list of the rule with the given ID.

The main directive to know is SecRule, which is used to create rules and thus does most of the
work. The remainder of this section documents the individual elements that make the rules.

Anatomy of a Rule

Property of Girish Motwani <kushalbooks@yahoo.co.in>

72 Chapter 5: Rule Language Overview

Every rule defined by SecRule conforms to the same format, as follows:

SecRule VARIABLES OPERATOR [TRANSFORMATION_FUNCTIONS, ACTIONS]

You can see all 4 building blocks of the rule language on the list. The 2 building blocks at
the end are optional; if they are not explicitly defined in a rule, the defaults (inherited from
a previous SecDefaultAction directive) will be used. So what do those building blocks do?
Here’s what:

Variables
Identify parts of a HTTP transaction that a rule works with. ModSecurity will extract
information from every transaction and make it available, through variables, to rules to
use. The important thing about variables to remember is that they contain raw bytes of
data, meaning that they can contain special characters and bytes of any value. They are
not text. Your sites may be restricting themselves to using only text in parameters, but
that does not mean that your adversaries will. In fact, your adversaries will use whatever
helps them achieve their goals. A rule must specify one or more variables.

Operators
Specify how a (transformed) variable is to be analyzed. Regular expressions are the most
popular choice, but ModSecurity supports many other operators, and you are even able
to write your own. Only one operator is allowed per rule.

Transformation functions
A rule can specify one or more transformation functions. The transformation functions
change input in some way before the rule operator is run. They are commonly used to
counter evasion, but they can also be used to decode data when necessary.

Actions
Specify what should be done when a rule matches.

Variables
In ModSecurity, variables are used to identify the parts of a HTTP transaction that you wish
to inspect. One of the main features of ModSecurity is the fact that it preprocesses raw trans-
action data and makes it easy for the rules to focus on the logic of detection. There are 77
variables in the most recent version of ModSecurity; they are listed in this section.

Scalar variables
Contain only one piece of information, which could be data or a number. For example,
REMOTE_ADDR always contains the IP address of the client.

Collections
Groups of regular variables. Some collections (e.g., ARGS) allow enumeration, making
it possible to use every member in a rule. Some other collections (e.g., ENV) are not as

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Request Variables 73

flexible, but there is always going to be some way to extract individual regular variables
out of them.

Read-only collections
Many of the collections point to some data that cannot be modified, in which case the
collection itself will be available only for reading.

Read/write collections
When a collection is not based on immutable data, ModSecurity will allow you to mod-
ify it. A good example of a read/write collection is TX, which is a collection that starts
empty and exists only as long as the currently processed transaction exists.

Special collections
Sometimes a collection is just a handy mechanism to retrieve information from some-
thing that is not organized as a collection but can seem like one. This is the case with
the XML collection, which takes an XPath expression as a (mandatory) parameter and
allows you to extract values out of an XML file.

Persistent collections
Some collections can be stored into ModSecurity’s internal database, where the data
can live beyond the life of the current transaction. This feature allows you to adopt a
wider view of your systems—for example, tracking access per IP address or per session,
or per user account.

Request Variables
Request variables are those extracted from the request part of the transaction that is being
inspected. The variables that describe the request line (request method, URI, and protocol
information) and the request headers are available from the very beginning, but the complete
information may not be available until phase 2 (REQUEST_BODY) begins.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

74 Chapter 5: Rule Language Overview

Table 5.2. Request variables

Variable Description

ARGS Request parameters (read-only collection)

ARGS_COMBINED_SIZE Total size of all request parameters combined

ARGS_NAMES Request parameters’ names (collection)

ARGS_GET Query string parameters (read-only collection)

ARGS_GET_NAMES Query string parameters’ names (read-only collection)

ARGS_POST Request body parameters (read-only collection)

ARGS_POST_NAMES Request body parameters’ names (read-only collection)

FILES File names (read-only collection)

FILES_COMBINED_SIZE Combined size of all uploaded files

FILES_NAMES File parameter names (read-only collection)

FILES_SIZES A list of file sizes (read-only collection)

FILES_TMPNAMES A list of temporary file names (read-only collection)

PATH_INFO Extra path information

QUERY_STRING Request query string

REMOTE_USER Remote user

REQUEST_BASENAME Request URI basename

REQUEST_BODY Request body

REQUEST_COOKIES Request cookies (read-only collection)

REQUEST_COOKIES_NAMES Request cookies’ names (read-only collection)

REQUEST_FILENAME Request URI file name/path

REQUEST_HEADERS Request headers (collection, read-only)

REQUEST_HEADERS_NAMES Request headers’ names (read-only collection)

REQUEST_LINE Request line

REQUEST_METHOD Request method

REQUEST_PROTOCOL Request protocol

REQUEST_URI Request URI, convert to exclude hostname

REQUEST_URI_RAW Request URI, as it was presented in the request

Server Variables
Server variables contain the pieces of information available to the server, but still related to
the ongoing transaction.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Response Variables 75

Table 5.3. Server variables

Variable Description

AUTH_TYPE Authentication type

REMOTE_ADDR Remote address

REMOTE_HOST Remote host

REMOTE_PORT Remote port

SCRIPT_BASENAME Script basename

SCRIPT_FILENAME Script file name/path

SCRIPT_GID Script group ID

SCRIPT_GROUPNAME Script group name

SCRIPT_MODE Script permissions

SCRIPT_UID Script user ID

SCRIPT_USERNAME Script user name

SERVER_ADDR Server address

SERVER_NAME Server name

SERVER_PORT Server port

Response Variables
Response variables are those extracted from the response part of the transaction that is be-
ing inspected. Most response variables will be available in phase 3. The arguably most impor-
tant response variable, RESPONSE_BODY, is available only in phase 4 (the phase is also called
RESPONSE_BODY).

Table 5.4. Response variables

Variable Description

RESPONSE_BODY Response body

RESPONSE_CONTENT_LENGTH Response content length

RESPONSE_CONTENT_TYPE Response content type

RESPONSE_HEADERS Response headers (read-only collection)

RESPONSE_HEADERS_NAMES Response headers’ names (read-only collection)

RESPONSE_PROTOCOL Response protocol

RESPONSE_STATUS Response status code

Miscellaneous Variables
Miscellaneous variables are exactly what they are called: they are the variables that couldn’t
fit in any other category.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

76 Chapter 5: Rule Language Overview

Table 5.5. Utility variables

Variable Description

HIGHEST_SEVERITY Highest severity encountered

MATCHED_VAR Contents of the last variable that matched

MATCHED_VARS Variables that matched int the most recent rule

MATCHED_VARS_NAMES Names of all variables that matched in the most recent rule

MATCHED_VAR_NAME Name of the last variable that match

MODSEC_BUILD ModSecurity build version (e.g., 02050102)

SESSIONID Session ID associated with current transaction

UNIQUE_ID Unique transaction ID generated by mod_unique_id

USERID User ID associated with current transaction

WEBAPPID Web application ID associated with current transaction

WEBSERVER_ERROR_LOG Error messages generated by Apache during current transaction

Parsing Flags
Parsing flags are used by ModSecurity to signal important parsing events. The idea is to avoid
taking implicit action (e.g., blocking in response to an invalid request), but allow the rules
to decide what to do.

Table 5.6. Request body parsing variables

Variable Description

MULTIPART_BOUNDARY_QUOTED Multipart parsing error: quoted boundary encountered

MULTIPART_BOUNDARY_WHITESPACE Multipart parsing error: whitespace in boundary

MULTIPART_CRLF_LF_LINES Multipart parsing error: mixed line endings used

MULTIPART_DATA_BEFORE Multipart parsing error: seen data before first boundary

MULTIPART_DATA_AFTER Multipart parsing error: seen data after last boundary

MULTIPART_FILE_LIMIT_EXCEEDED Multipart parsing error: too many files

MULTIPART_HEADER_FOLDING Multipart parsing error: header folding used

MULTIPART_INVALID_HEADER_FOLDING Multipart parsing error: invalid header folding encountered

MULTIPART_LF_LINE Multipart parsing error: LF line ending detected

MULTIPART_SEMICOLON_MISSING Multipart parsing error: missing semicolon before boundary

MULTIPART_STRICT_ERROR At least one multipart error except unmatched boundary occurred

MULTIPART_UNMATCHED_BOUNDARY Multipart parsing error: unmatched boundary detected

REQBODY_PROCESSOR Request processor that handled request body

REQBODY_PROCESSOR_ERROR Request processor error flag (0 or 1)

REQBODY_PROCESSOR_ERROR_MSG Request processor error message

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Collections 77

Collections
Collections are the special kind of variables that can contain other variables. With exception
of the persistent collections, all collections are essentially one-offs—special variables that give
access to the information to which ModSecurity has access.

Table 5.7. Special collections

Variable Description

ENV Environment variables (read-only collection, although it’s possible to use setvar
to change it)

GEO Geo lookup information from the last @geoLookup invocation (read-only collec-
tion)

GLOBAL Global information, shared by all processes (read/write collection)

IP IP address data storage (read/write collection)

TX Transient transaction data (read/write collection)

RULE Current rule metadata (read-only collection)

SESSION Session data storage (read/write collection)

USER User data storage (read/write collection)

XML XML DOM tree (read-only collection)

Time Variables
Time variables describe the moment in time when the current transaction began.

Table 5.8. Time variables

Variable Description

TIME Time (HH:MM:SS)

TIME_DAY Day of the month (1–31)

TIME_EPOCH Seconds since January 1, 1970 (e.g., 1251029017)

TIME_HOUR Hour of the day (0–23)

TIME_MIN Minute of the hour (0–59)

TIME_MON Month of the year (0–11)

TIME_SEC Second of the minute (0–59)

TIME_WDAY Week day (0–6)

TIME_YEAR Year

Operators

Property of Girish Motwani <kushalbooks@yahoo.co.in>

78 Chapter 5: Rule Language Overview

In ModSecurity, operators are invoked to inspect variables. Most rules will use regular expres-
sions for the inspection, but there will be cases when other operators will be more suitable.
Numerical operators, for example, make it possible to compare numerical values, which is
difficult to achieve using regular expressions. Similarly, parallel matching, which matches any
number of phrases in parallel, achieves much better performance than regular expressions.

There are four operator groups:

• String–matching operators

• Numerical operators

• Validation operators

• Miscellaneous operators

String Matching Operators
String matching operators all take a string on input and attempt to match it to the provided
parameter. The @rx and @pm operators are the ones commonly used, because of their versatil-
ity (@rx) and speed (@pm), but the remaining operators are also useful, especially if you need
variable expansion, which neither @rx nor @pm support.

Table 5.9. String matching operators

Operator Description

@beginsWith Input begins with parameter

@contains Input contains parameter

@endsWith Input ends with parameter

@rsub Manipulation of request and response bodies

@rx Regular pattern match in input

@pm Parallel pattern matching

@pmFromFile (also @pmf as of 2.6) Parallel patterns matching, with patterns read from a file

@streq Input equal to parameter

@within Parameter contains input

Numerical Operators
Numerical operators, in Table 5.10, “Numerical operators” make comparing numerical values
easy (previously, you had to resort to using complex regular expressions). Numerical opera-
tors support variable expansion as of ModSecurity 2.5.12.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Validation Operators 79

Table 5.10. Numerical operators

Operator Description

@eq Equal

@ge Greater or equal

@gt Greater than

@le Less or equal

@lt Less than

Validation Operators
Validation operators, listed in Table 5.11, “Validation operators”, all validate input in some
way.

Table 5.11. Validation operators

Operator Description

@validateByteRange Validates that parameter consists only of allowed byte values

@validateDTD Validates XML payload against a DTD

@validateSchema Validates XML payload against a schema

@validateUrlEncoding Validates an URL-encoded string

@validateUtf8Encoding Validates an UTF-8-encoded string

Miscellaneous Operators
And, finally, there’s the miscellaneous category (Table 5.12, “Miscellaneous operators”),
which offers some very useful functionality.

Table 5.12. Miscellaneous operators

Operator Description

@geoLookup Determines the physical location of an IP address

@gsbLookup Performs a lookup against Google’s Safe Browsing database

@inspectFile Invokes an external script to inspect a file

@rbl Looks up the parameter against a RBL (real-time block list)

@verifyCC Checks whether the parameter is a valid credit card number

verifyCPF Checks whether the parameter is a valid Brazilian social security number

verifySSN Checks whether the parameter is a valid US social security number

@ipMatch Matches input against one or more IP addresses or network segments

Property of Girish Motwani <kushalbooks@yahoo.co.in>

80 Chapter 5: Rule Language Overview

Actions
Actions make ModSecurity tick. They make it possible to react to events, and, more impor-
tantly, they are the glue that holds everything else together and makes the advanced features
possible. They are also the most overloaded element of the rule language. Because of the con-
straints of the Apache configuration syntax, within the rule language that exists, actions are
used to carry everything other than variables and operators.

Actions can be split into 7 categories:

• Disruptive actions

• Flow actions

• Metadata actions

• Variable actions

• Logging actions

• Special actions

• Miscellaneous Actions

Disruptive Actions
Disruptive actions (Table 5.13, “Disruptive actions”) specify what a rule wants to do on a
match. Each rule must be associated with exactly one disruptive action. The pass action is the
only exception, as it will allow processing to continue when a match occurs. All other actions
from this category will block in some specific way.

Table 5.13. Disruptive actions

Action Description

allow Stop processing of one or more remaining phases

block Indicate that a rule wants to block

deny Block transaction with an error page

drop Close network connection

pass Do not block, go to the next rule

proxy Proxy request to a backend web server

redirect Redirect request to some other web server

Flow Actions
Flow actions (Table 5.14, “Flow actions”) alter the way rules are processed within a phase.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Metadata Actions 81

Table 5.14. Flow actions

Action Description

chain Connect two or more rules into a single logical rule

skip Skip over one or more rules that follow

skipAfter Skip after the rule or marker with the provided ID

Metadata Actions
Metadata actions (Table 5.15, “Metadata actions”) provide additional information about
rules. The information is meant to accompany the error messages to make it easier to under-
stand why they occurred.

Table 5.15. Metadata actions

Action Description

id Assign unique ID to a rule

phase Phase for a rule to run in

msg Message string

rev Revision number

severity Severity

tag Tag

Variable Actions
Variable actions (Table 5.16, “Variable actions”) deal with variables. They allow you to set,
change, and remove variables.

Table 5.16. Variable actions

Action Description

capture Capture results into one or more variables

deprecatevar Decrease numerical variable value over time

expirevar Remove variable after a time period

initcol Create a new persistent collection

setenv Set or remove an environment variable

setvar Set, remove, increment, or decrement a variable

setuid Associate current transaction with an application user ID (username)

setsid Associate current transaction with an application session ID

Property of Girish Motwani <kushalbooks@yahoo.co.in>

82 Chapter 5: Rule Language Overview

Logging Actions
Logging actions (Table 5.17, “Logging actions”) influence the way logging is done. The actions
that influence logging (auditlog, log, noauditlog, and nolog) only affect the rule in which
they reside. To control logging for the transaction as a whole, use the ctl action.

Table 5.17. Logging actions

Action Description

auditlog Log current transaction to audit log

log Log error message; implies auditlog

logdata Log supplied data as part of error message

noauditlog Do not log current transaction to audit log

nolog Do not log error message; implies noauditlog

sanitiseArg Remove request parameter from audit log

sanitiseMatched Remove parameter in which a match occurred from audit log

sanitiseRequestHeader Remove request header from audit log

sanitiseResponseHeader Remove response header from audit log

Special Actions
Special actions (Table 5.18, “Special actions”) are gateways of a sort; they provide access to
another class of functionality. The ctl action has several sub-actions of its own and allows
engine configuration to be changed (but the changes only affect the ongoing transaction).
The multiMatch rule activates a special way of matching in which the rule operator is run after
every transformation (normally, the operator is run only once after all transformations). The
t action is used to specify zero or more transformations that will be applied to variables before
an operator is run.

Table 5.18. Special actions

Action Description

ctl Change configuration of current transaction

multiMatch Activate multi-matching, where an operator runs after every transformation

t Specify transformation functions to apply to variables before matching

Miscellaneous Actions
Miscellaneous actions (Table 5.19, “Miscellaneous actions”) contain the actions that don’t be-
long in any of the groups.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 83

Table 5.19. Miscellaneous actions

Action Description

append Append content to response body

exec Execute external script

pause Pause transaction

prepend Prepend content to response body

status Specify response status code to use with deny and redirect

xmlns Specify name space for use with XPath expressions

Summary
This chapter gave you a complete overview of the rule language, but that does not mean that
you won’t need it again in the future. I like to think of this chapter as a map of all ModSecurity
features. As with a map, whenever you need to do something with ModSecurity, you can come
here to discover whether it’s possible and how it can be done. For the details, though, visit
one of the subsequent chapters.

The next chapter focuses on rule writing, and it’s going to be the most interesting chapter of
all you’ve seen so far. I’d like to think that it’s setting a trend, with every new chapter being
more interesting than the one before it.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

84

Property of Girish Motwani <kushalbooks@yahoo.co.in>

85

6 Rule Language Tutorial
Now that you have a basic understanding of what the rules look like, I will walk you through
some examples that demonstrate the most commonly used functionality.

Introducing Rules
The simplest possible rule will specify only a variable and a regular expression. In the exam-
ple that follows, we look at the request URI, trying to match the regular expression pattern
<script> against it:

SecRule REQUEST_URI <script>

This simple rule takes advantage of the fact that ModSecurity allows a rule to not specify an
operator, in which case it assumes the regular expression operator. This feature is a leftover
from ModSecurity 1.x, which supported only regular expressions—there were no operators
at all. If you wish, you can always explicitly specify the operator. I usually do. The previous
rule is functionally identical to this one:

SecRule REQUEST_URI "@rx <script>"

Note how I’ve had to use double quotes because the second parameter now contains a space.

ModSecurity supports a number of operators. Some are similar, but often have different per-
formance characteristics. For example, the regular expression pattern I used for the examples
(<script>) isn’t much of a pattern. It’s just a string, because it does not contain any special
characters. I might have just as well written the same rule using the @contains operator:

SecRule REQUEST_URI "@contains <script>"

By now you are probably aware that the operators are very straightforward. They take a piece of
a transaction and analyze it, typically comparing it in some way to the parameter you provided
in the rule (<script> in the previous examples).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

86 Chapter 6: Rule Language Tutorial

Working with Variables
You can specify as many variables as you wish in a rule, as long as you separate them using
the pipe character:

SecRule REQUEST_URI|REQUEST_PROTOCOL <script>

Some variables, which we call collections, potentially contain more than one piece of informa-
tion. This is the case with the ARGS variable, for example, which contains all request parame-
ters in a transaction. You use the colon operator to specify only one member of a collection,
as you can see in the following rule, which looks only at the parameter named p:

SecRule ARGS:p <script>

You can use the same collection more than once within the same rule, if you wish:

SecRule ARGS:p|ARGS:q <script>

The colon operator is actually quite potent and allows you to use a regular expression to specify
the names, which is helpful when parameter names change at runtime. The following rule
will target all parameters whose names begin with the letter p, catching parameters such as
password or pea:

SecRule ARGS:/^p/ <script>

Warning
As always with regular expressions, take care not to forget to use the ^ and $ anchors
when you intend to match complete request parameter names.

When you do not restrict a rule to only certain members of a collection, ModSecurity will
assume that you want to use all of them. This is quite handy to use when you don’t know
what parameters a page uses. Not all collections can be used in this way (for example, ARGS
can, but ENV cannot), but when they can, a reference to such a collection will be expanded into
individual variables just before a rule is run. You can observe in the debug log how this works.
For example, for a request that has the parameters p, q, and z, ARGS expands as follows:

[4] Expanded "ARGS" to "ARGS:p|ARGS:q|ARGS:z".

Now that you know how expansion works, parameter exclusion will make sense: to remove a
parameter from a rule, just put an exclamation point before it. The following rule will look
at all request parameters except the one named z:

SecRule ARGS|!ARGS:z <script>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Combining Rules into Chains 87

Combining Rules into Chains
When you specify more than one variable in a rule, you are effectively combining them using
the OR logical operator. The rule will match if any of the variables matches. It is also possible
to use a logical AND, whereby you combine several rules into one. Let’s say that you want to
write a rule that matches when something is found in both the parameter p and the parameter
q. You write:

SecRule ARGS:p <script> chain
SecRule ARGS:q <script>

This is called rule chaining. The chain action constructs a chain of two or more rules and
effectively creates a single rule with more than one evaluation step. The first rule in a chain
will always run, but the subsequent rules will run only if all the previous rules (in the same
chain) ran. Whenever a rule that belongs to a chain does not match, the execution continues
with the first rule that is not part of that chain.

Operator Negation
Operator result can be negated by placing an exclamation point right before it. For example,
if you wanted to write a rule that matches on a username that is neither admin nor root (the
opposite of the intent in the previous example), write this:

SecRule ARGS:username "!@rx ^(admin|root)$"

Operator negation should not be confused with rule negation. The two are the same only
when a rule is used against only one variable, but the situation changes when there are more.
Observe the following rule:

SecRule ARGS:p|ARGS:q "!@eq 5"

The previous rule will match if any one parameter does not equal 5. If you want to write a
rule that matches when both parameters do not equal 5, you’ll have to use rule chaining:

SecRule ARGS:p "!@eq 5" chain
SecRule ARGS:q "!@eq 5"

Variable Counting
Here’s a question for you: how do you detect something that isn’t there? Take the common
rule that addresses all parameters in a request:

SecRule ARGS <script>

In a request without any parameters, ARGS will expand to zero variables. Without any variables
to work with, any operator will fail and the rule (or a chain) will not match.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

88 Chapter 6: Rule Language Tutorial

The answer is to use ModSecurity’s ability to count how many variables there are in a collec-
tion. With the help of the ampersand operator, we can look into ARGS and detect a case in
which there are no parameters:

SecRule &ARGS "@eq 0"

The ampersand operator can be applied to any collection, including a partial one. The follow-
ing rule will match whenever it sees a request with more than one parameter named username:

SecRule &ARGS:username "!@eq 1"

Using Actions
Most of the examples in this tutorial, so far, haven’t used any actions. I chose to initially focus
only on the mechanics of detection. But it is practically impossible to write a rule without
specifying a single action. Furthermore, it is good practice to write rules that are self-contained
and do not rely on the defaults.

Actions are placed in the third parameter of SecRule and the first parameter of SecAction. A
rule can have zero, one, or more actions. If there is more than one action, they are separat-
ed with a comma and any number of whitespace characters in between. The following rule
specifies two actions:

SecRule ARGS K1 log,deny

Some actions have parameters, in which case you must place a colon after the action name
and follow with the parameter. To deny with status 404, you could use:

SecRule ARGS K1 log,deny,status:404

Finally, if you want to supply a parameter that uses whitespace or contains a comma, enclose
the value in single quotes. This way of parameter handling is often needed with messages:

SecRule ARGS K1 "log,deny,msg:'Acme attack detected'"

In addition to using single quotes around the parameter to the msg action, I enclosed the entire
third directive parameter in double quotes. This is needed for Apache to correctly parse the
directive line whenever there is whitespace in the directive parameters. You shall see later that
some actions take complex parameters (e.g., ctl and setvar), but the same syntax discussed
here applies to them too.

Understanding Action Defaults
You now know how to specify rule actions, but what happens if you don’t? ModSecurity has
a concept of default action list. Whenever a new rule is added to the configuration, the ac-
tion list of the rule is merged with the default action list. The default action list is currently

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Understanding Action Defaults 89

phase:2,log,auditlog,pass, but you can override that at any time using the SecDefaultAc-
tion directive.

In the simplest case, when the rule being added has no action, the default action list is
used instead. Take the following rule (and assume there are no other rules or defaults in the
configuration):

SecRule ARGS K1

After the default action list is taken into consideration, the previous rule looks like this:

SecRule ARGS K1 phase:2,log,auditlog,pass

In a general case, when a rule has one or more actions, merging means one of two things:

Rule action replaces an action in the default action list
This will typically happen with disruptive actions, of which there can only be one per
rule. If there’s a disruptive action specified in both the default actions list and the rule,
the one in the rule will prevail.

Rule action is appended to the ones in the default action list
Some actions can appear more than once in an action list. This is the case with many
non-disruptive actions, such as t, setvar, ctl, and so on. In some cases, it is possible for
the rule actions to completely remove the default actions, but how that’s done depends
on the action in question. With the transformation action, for example, using t:none
clears the list of transformations and starts over.

The idea with SecDefaultAction was to make the job of rule writing easier by allowing you
to specify the commonly used actions only once. For example, you could write something
like this:

SecDefaultAction phase:2,log,deny,status:404
SecRule ARGS K1
SecRule ARGS K2
...
SecRule ARGS K99

This approach works well when you’re in complete control of your configuration, but it com-
plicates things, because the rules are no longer self-contained. The rules are perhaps easier to
write initially, but at the price of being more difficult to understand when you come back to
them in a couple of months. Furthermore, there’s always a danger that there will be unfore-
seen interaction between the defaults and the rule. For example, suppose that you write a rule
that relies on certain default values, but then you later change the defaults without realizing
how you’re affecting the rules. This is particularly true if you place any transformation func-
tions in the default list:

SecDefaultAction phase:2,log,pass,t:lowercase

Property of Girish Motwani <kushalbooks@yahoo.co.in>

90 Chapter 6: Rule Language Tutorial

SecRule ARGS K1 t:urlDecode

Note
You should always write rules to specify the complete list of transformation functions
that they depend on. To achieve this, always specify t:none as the first transformation
function, which will reset the transformation pipeline.

Another peculiarity with the SecDefaultAction directive is that it can be used more than once.
Every time you use it, the default action list is changed. For example:

First we have some rules that only warn
SecDefaultAction phase:2,log,pass
SecRule ARGS W1
SecRule ARGS W2
...
SecRule ARGS W19

Now we have some rules that block
SecDefaultAction phase:2,log,deny,status:500
SecRule ARGS B1
...
SecRule ARGS B89

The bottom line is that even though SecDefaultAction is quite powerful and allows you to
specify any action, you should use it only to specify the default blocking method. Anything
other than that is asking for trouble! Because of that, and because of some other issues that
occur whenever SecDefaultAction is used in configuration with multiple contexts (which will
be explained in the section called “SecDefaultAction Inheritance Anomaly” in Chapter 7),
there is a good probability that SecDefaultAction will be deprecated and replaced with a safer
mechanism in the future.

Actions in Chained Rules
Special rules apply to the placement of actions in chained rules. Because several chained rules
form a single complex rule, there can only be one disruptive action for the entire chain. Sim-
ilarly, there can only be one set of metadata rules. By convention, the disruptive action and
the metadata actions are placed with the first rule in a chain:

SecRule ARGS K1 chain,id:1001,log,deny
SecRule ARGS k2

That example looks innocent enough, but trouble begins once you start to write complex
chained rules (as most are), when you will have to mix non-disruptive actions with the dis-
ruptive ones. For example:

SecRule ARGS K1 chain,id:1001,log,deny,setvar:tx.score=+1

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Unconditional Rules 91

SecRule ARGS K2 setvar:tx.score=+1

Although the disruptive actions require special treatment when used in rule chains, the other
actions don’t. That means that a non-disruptive action associated with a rule executes as soon
as the rule matches, even when the rule is a part of a chain. Only the disruptive actions execute
at the end, when the last rule in the chain matches.

In hindsight, the last rule in a chain is a much better location for the disruptive and metadata
rules, but it’s too late to change that at this point.

Unconditional Rules
The actions that you specify in a SecRule execute when a match occurs, but you can use the
SecAction directive to do something unconditionally. This directive accepts only one para-
meter, which is identical to the third parameter of SecRule, and it’s a list of actions that you
want to be executed:

SecAction nolog,pass,setvar:tx.counter=10

The SecAction directive is useful in the following cases:

• To initialize one or more variables before the rules that use them are processed.

• To initialize a persistent collection, most often using a client’s IP address.

• In combination with skip, to implement an if-then-else construct (described later in
this chapter).

Using Transformation Functions
You already know that rules typically work by taking some data determined by a variable name
and applying an operator to it. But direct matching like that happens only in the simplest
case. In a general case, the data processed by a rule will be transformed by one or more trans-
formation functions before it is fed to an operator. The transformation functions are often
referred to as a transformation pipeline.

As an example, take the following rule, which transforms input by converting all characters
into lowercase, then compressing multiple consecutive whitespace characters:

SecRule ARGS "@contains delete from" \
 phase:2,t:lowercase,t:compressWhitespace,block

As a result, the rule will match all the following forms of input:

delete from
DELETE FROM

Property of Girish Motwani <kushalbooks@yahoo.co.in>

92 Chapter 6: Rule Language Tutorial

deLeTe fRoM
Delete From
DELETE\tFROM -- \t represents a TAB character

Note
It is a good practice to always begin the list of transformation functions with t:none,
which clears the transformation pipeline to start from scratch. If you don’t do that,
then you—as a rule writer—can never be completely sure that your user didn’t spec-
ify a transformation function in his or her SecDefaultAction directive (on purpose
or by mistake), in which case your rule will probably malfunction. Using t:none en-
sures that your rules use only the transformation actions you specified.

There are several reasons why you might want to apply operators to something other than the
original variable values:

• Your input is not available in a form that is useful to you. For example, it might be
Base64-encoded, in which case you won’t be able to do anything useful with it. By ap-
plying the transformation function that decodes Base64 data (t:base64Decode), you
“open” up the data for inspection.

• Similarly, you may need a piece of data in some other form. If you have some binary
data that you need to record in a user-friendly manner, you will probably encode it as
hex characters using t:hexEncode.

• Sometimes rules are difficult or impossible to write in order to deal with input in its
original form. Take, for example, case sensitivity. Most ModSecurity operators are case-
sensitive, but there are many occasions when case does not matter. If you attempt to
match a nontrivial string using a case-sensitive matching function, you will soon dis-
cover that you need to write either a number or rules (each with a different combina-
tion of lowercase and uppercase letters) or a rule with a very ugly and difficult-to-deci-
pher regular expression. You deal with this particular problem by transforming input
into lowercase before matching.

• In the majority of cases, however, you will use transformation functions to counter
evasion. Evasion is a technique often used by attackers to bypass existing detection and
protection mechanisms. They will take advantage of the specific context in which at-
tack payload data is processed to modify it in such a way as to evade detection, but re-
main effective.

Blocking
Regardless of whether you use actions, every ModSecurity rule is always associated with one
(and only one) disruptive action. The disruptive actions are those that interrupt rule process-
ing within a phase. A disruptive action can do one of three things:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Changing Rule Flow 93

Continue with the next rule
This is a special case of a disruptive action that doesn’t disrupt. Use the pass action
whenever you want to only warn about a potential issue, or if you want to have a rule
that changes something else in the transaction or persistent state (e.g., increments a
counter).

Stop processing phase but continue with transaction
The allow action is used for whitelisting. It allows transactions to proceed without fur-
ther inspection. Depending on how you use allow, you may choose to skip just the cur-
rent phase, the request inspection phases (phases 1 and 2) or all remaining inspection
phases (the logging phase always runs). Whitelisting is so often used that I dedicate the
section called “Whitelisting” in Chapter 7 to it.

Stop processing phase and block transaction
Blocking is a last-resort measure you undertake to either protect your web applications
or turn away undesirable clients (e.g., worms, bots, and the like). The best way for a
rule to block is by using the block action, which indicates blocking but does not state
how it is to be done. Another advantage of block is that it can be overridden by the
rule administrator. If you use any of the other blocking actions (deny, drop, redirect,
or proxy), you are essentially hard-coding policy in rules. That may be all right if you
are writing one-off rules for yourself, but be warned that for others to use your rules,
they will probably have to change them to suit their circumstances.

If you are very interested in blocking, head to the section called “Advanced Blocking” in Chap-
ter 9, which covers the topic in detail.

Changing Rule Flow
The assumption with ModSecurity rules is that they will be processed one by one, starting
with the first rule in a phase and ending with the last. If a match occurs somewhere in the
phase and blocking takes place, phase processing will stop, but the execution of the rules is still
linear. But there is only so much you can achieve by executing rules in that fashion. Sometimes
you will want to form rule groups and create if-then-else constructs, and for that you will
need the actions that change the way rules flow.

Historically, the first skipping action supported by ModSecurity was skip, which takes one
parameter and skips over as many rules as you specify. Rule skipping does not make any sense
when used with a disruptive action, which means that you will use skip only in combination
with pass. The following example demonstrates skip:

SecRule ARGS K1 id:1,nolog,pass,skip:2
SecRule ARGS K2 id:2,nolog,pass
SecRule ARGS K3 id:3,log,block

In this example, when rule 1 matches, it will skip the next two rules. It is as simple as that.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

94 Chapter 6: Rule Language Tutorial

You should have the following in mind:

• When you form a chain of two or more individual rules, the entire chain counts as one
rule for the sake of skipping.

• You can use skip in a chain, but the same rules as for the disruptive actions apply: only
one skip is allowed and it has to be placed within the chain starter rule.

• Skipping only works within the same phase as the rule that initiated it. As far as Mod-
Security is concerned, the rule in other phases simply do not exist.

Skipping is often used as an optimization technique. Sometimes executing a group of rules
makes sense only under a specific condition and executing them otherwise is a waste of CPU
power. In such cases, you will typically precede the group with a single rule that tests for the
condition and jumps over the entire group of rules if the condition is not true.

Over time, several problems were identified with the skip action. First, counting the rules you
wish to skip over is not very interesting, and it’s easy to make a mistake. It also makes mainte-
nance difficult. Every time you want to make changes to your rules you have to first remember
that you have a skipping rule in the neighborhood, then look at it and figure out whether you
need to update the skip parameter. There is also a potentially big problem that occurs when
you use SecRuleRemoveById or SecRuleRemoveByMsg to remove a rule that is skipped over. With
one fewer rule to skip over, the skip action will consume the intended next rule. The following
example demonstrates this problem:

SecRule ARGS K1 id:1,nolog,pass,skip:1
SecRule ARGS K2 id:2,nolog,pass
SecRule ARGS K3 id:3,nolog,pass

...

SecRuleRemoveById 2

Rule 1 wants to skip over rule 2 on a match, but because we remove rule 2 later in the
configuration, rule 1 will skip over rule 3 instead.

Smarter Skipping
After identifying the problems with skip, we decided to improve the rule language slightly and
added skipAfter and SecMarker to the rule language. The first example, rewritten to use the
new facilities, looks like this:

SecRule ARGS K1 id:1,nolog,pass,skipAfter:4
SecRule ARGS K2 id:2,nolog,pass,skipAfter:4
SecRule ARGS K3 id:3,log,block
SecMarker 4

Property of Girish Motwani <kushalbooks@yahoo.co.in>

If-Then-Else 95

When you use skipAfter, it will start to examine all the rules to follow to find the one with the
specified ID. Once found, rule execution will continue with the next rule. This really means
that you don’t always need to use SecMarker. In many cases, skipAfter alone will work just
fine. The same example can be rewritten like this:

SecRule ARGS K1 id:1,nolog,pass,skipAfter:3
SecRule ARGS K2 id:2,nolog,pass,skipAfter:3
SecRule ARGS K3 id:3,log,block

If-Then-Else
You can implement a primitive if-then-else construct if you use skip and SecAction together:

SecRule ARGS K1 id:1,nolog,pass,skip:2
SecRule ARGS K2 id:2,block
SecAction nolog,pass,skip:1
SecRule ARGS K3 id:3,block

The first rule in the example determines which of the two paths will be processed. If it matches,
the skip action is executed to skip to rule 3. However, if the first rule doesn’t match, the next
rule, rule 2, will be processed. The unconditional match in SecAction, which follows rule 2,
ensures that rule 3 is not processed if there is no match in rule 1.

Skipping using markers doesn’t make the rules easier to read, although it makes large rule
groups easier to maintain:

SecRule ARGS K1 id:1,nolog,pass,skipAfter:11
SecRule ARGS K2 id:2,block
SecAction nolog,pass,skipAfter:12
SecMarker 11
SecRule ARGS K3 id:3,block
SecMarker 12

Controlling Logging
There are several logging actions that a rule can use, and they fall into two groups. (As a
reminder, you can find the list of all logging rules in Table 5.17, “Logging actions”.) The first
group consists of the actions that influence only what happens during the processing of the
current rule; such actions are used in virtually every rule and I cover them in this section.
The actions in the second group influence how logging is done on a transaction level, and
they are normally only used in configuration rules. I will not cover the second group here,
because the common use cases are already covered in the section called “Advanced Logging
Configuration”.

Going back to the first group, the most common usage is as follows:

SecRule ARGS K1 log,auditlog,block

Property of Girish Motwani <kushalbooks@yahoo.co.in>

96 Chapter 6: Rule Language Tutorial

If that rule matches, the actions log and auditlog tell the engine to emit an alert and log the
transaction to the audit log, respectively. I will let you in on a secret. The log action actually
implies auditlog, so it is always safe to use only the first. (The same is true for the actions that
ask for no logging: nolog, the opposite of log, implies noauditlog, which is the opposite of
auditlog.) There are two things to consider:

1. An alert is a record of a rule match that will appear in the debug log, in the Apache’s
error log, and in the H section of an audit log entry. Because there are two pairs of ac-
tions (log and nolog, and auditlog and noauditlog) you can decide exactly what hap-
pens, logging-wise, when a rule matches. Most rules will want both, but you may al-
so log a match only to the error log and not have an entire audit log entry (which you
achieve with log,noauditlog).

2. When a rule specifies auditlog, that does not mean that an audit log will be created.
You should think about auditlog as asking for a transaction to be recorded, but a de-
tection rule will not normally have full control over what will actually happen. Mod-
Security classifies transactions as relevant or not relevant. When a rule matches and
when it specifies auditlog (either explicitly, or implicitly through log without noau-
ditlog), ModSecurity will set the relevancy flag. This will normally cause the trans-
action to be recorded, but, as we have seen in the section called “Advanced Logging
Configuration”, a subsequent rule can override that decision. This separation of con-
cerns is intentional. Rules should only indicate what they want to achieve, but it is the
administrator who should have the final say.

Capturing Data
The TX collection has 10 variables whose names are just digits from 0 to 9. Those variables are
reserved for data capture, which is primarily a feature of the @rx operator. To make use of this
feature, you have to do two things:

1. Use capturing parentheses within regular expression patterns to specify where capture
should take place

2. Add the capture action to the rule in which you wish data capture to take place

Suppose you are dealing with a web application that places session identifiers in the request
line. In order to support session state, you must extract the session information and initialize
session state. The URI used in the application and containing a session identifier could look
like this:

http://www.example.com/69d032331009e7b0/index.html

Your rule to extract the session identifier will use a regular expression data capture:

Initialize session state from the session identifier in URI
SecRule REQUEST_URI ^/([0-9a-fA-f]{16})/ phase:1,nolog,pass,capture,setsid:%{TX.1}

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Variable Manipulation 97

Note
Although the previous example neatly demonstrates the data capture mechanism,
that one rule alone is not enough for a correct implementation of session manage-
ment. For complete coverage refer to the section called “Session Management” in
Chapter 8.

Here is what happens on a successful match:

[4] Recipe: Invoking rule 8e8b5c8; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "479"].
[5] Rule 8e8b5c8: SecRule "REQUEST_URI" "@rx ^/([0-9a-fA-f]{16})/" …
"phase:1,auditlog,nolog,pass,capture,setsid:%{TX.1}"
[4] Transformation completed in 2 usec.
[4] Executing operator "rx" with param "^/([0-9a-fA-f]{16})/" against REQUEST_URI.
[9] Target value: "/69d032331009e7b0/index.html"
[9] Added regex subexpression to TX.0: /69d032331009e7b0/
[9] Added regex subexpression to TX.1: 69d032331009e7b0
[4] Operator completed in 63 usec.

The TX.0 variable will always contain the entire part of the input that was matched
(/69d032331009e7b0/ in the example; note the forward slashes at the beginning and at the end
of the value). If your regular expression uses the ^ and $ anchors, TX.0 will contain the entire
input. In the example, I used only one of the anchors, so TX.0 contains the data from the
beginning of input, but only until the end of the matching part (the second forward slash).
The TX.1 variable will contain just the part that was enclosed in the first parentheses set that
appeared in the pattern. The TX.2 variable will draw its contents from the second set of paren-
theses, and so on. Up to 9 captures will be created.

Note
If there is no match, the data capture variables will not be changed. However, if there
is a match, the unused data capture variables will be unset.

The @pm and @pmFromFile operators have limited support for data capture: if the capture action
is specified, the TX.0 variable will be populated with the input data matched. There is no need
to use parentheses in the patterns anywhere.

Variable Manipulation
Although most of the data you’ll be dealing with will be read-only, generated by Apache and
ModSecurity as they parse transaction data, there are certain variables and collections that
you are allowed to change. The TX collection is a private, per-transaction space that rules can
use to collaborate. The variables placed in TX can be retrieved using the same approach as for
other collections. The setvar action, however, allows the values to be changed.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

98 Chapter 6: Rule Language Tutorial

To create a new variable, simply set its value to something:

SecAction nolog,pass,setvar:tx.score=1

To delete a variable, place an exclamation point before the name:

SecAction nolog,pass,setvar:!tx.score

Numerical values can be incremented or decremented. The following example first increments
a variable by 2 then decrements it by 1:

SecAction nolog,pass,setvar:tx.score=+2
SecAction nolog,pass,setvar:tx.score=-1

Although collaboration within the same transaction is very interesting and useful, variable
manipulation becomes more exciting when combined with the persistent storage functional-
ity and the expirevar and deprecatevar actions (covered in Chapter 8, Persistent Storage).

Variable Expansion
In many text contexts, ModSecurity supports a feature known as variable expansion. The
reference manual refers to it as macro expansion, but I think that is rather ambitious, at least at
this time. Variable expansion enables you to put data into text, which can be very useful. You
may recall that I used variable expansion in the system rules in the section called “Handling
Processing Errors ”:

SecRule REQBODY_PROCESSOR_ERROR "!@eq 0" \
 "phase:2,t:none,log,block,msg:'Failed to parse request body: …
%{REQBODY_PROCESSOR_ERROR_MSG}',severity:2"

The idea is that when a fault occurs during request body parsing, you are able to see what the
actual error was. Variable expansion takes place whenever ModSecurity encounters a variable
name enclosed in %{...}, which is a syntax that ModSecurity adopted from mod_rewrite. The
variable name can be anything, and you are able to access collections using the familiar syntax
%{COLNAME.VARNAME}.

Note
The difference between COLNAME:VARNAME and COLNAME.VARNAME is that the former po-
tentially returns more than one result, whereas the latter will always return one result
(or no result at all).

Most parts of the rule language support variable expansion; many features actually require
it. For example, session or IP address tracking would be impossible without the ability to
somehow handle a piece of data received from a client. Having said that, don’t be surprised if

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Recording Data in Alerts 99

you encounter a part of the rule language that does not support this feature. If that happens,
you are advised to report the problem to the issue tracker. Initially, the support for this feature
was added only to the places where it was needed. By popular demand, the support expanded
over time, but there may still be places where variable expansion does not work.

Here’s an interesting example that uses variable expansion, where one piece of a request is
compared to another one, from the same request:

If an absolute URI (containing hostname) was given on the request
line, check that the same hostname is used in the Host header
SecRule REQUEST_URI_RAW "@beginsWith http" "chain,phase:2,block,msg:'Hostname …
mismatch'"
SecRule REQUEST_URI_RAW "!@beginsWith http://%{REQUEST_HEADERS.Host}"

Variable expansion was previously unsupported by the regular expression and parallel match-
ing operators, for performance reasons. Both @rx and @pm split their work into two steps. They
do as much work as possible up front, compiling patterns into more efficient internal repre-
sentations. Then, in the second step, they perform matching. The compilation of patterns is
done only once, at configure time, thus requiring the patterns to be static.

Starting with ModSecurity 2.6.2, the @rx operator supports variable expansion—but at a per-
formance cost. When variable expansion is used, the regular expression pattern will be com-
piled before the rule is executed. There is, of course, no performance penalty if variable ex-
pansion is not used.

Recording Data in Alerts
The one remaining unmentioned log action is logdata, whose purpose is to take a piece of
data you specify and include it along with other alert information.

Consider the following rule, which looks for JavaScript event handlers in input:

SecRule ARGS "\bon(abort|blur|change|click|dblclick|dragdrop|end|error|\
focus|keydown|keypress|keyup|load|mousedown|mousemove|mouseout\
mouseover|mouseup|move|readystatechange|reset|resize|select|submit|unload)\b\W*?=" \
 phase:1,t:none,t:lowercase,log,deny,capture,logdata:%{TX.0}

This rule may seem a bit intimidating at first glance, although it is conceptually simple. If you
read the regular expression pattern carefully, you will see that all the patterns we are looking
for share the beginning, have a part in the middle that is different, and share the end. So it’s
not that difficult after all. However, consider the following:

• Alert messages do not display input data. Thus, looking at an alert message alone, you
will not be able to tell which part of the pattern matched, and you will have to seek ac-
cess to the entire audit log. Even when it’s possible to get it, it will still be time-con-
suming.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

100 Chapter 6: Rule Language Tutorial

• Even with access to the audit log, tracking down the part of the input that matched
may not be simple. When this sort of rule matches, it typically happens with request
parameters that are quite long. So what you’d need to do first is understand what the
rule does and then effectively perform manual pattern matching by reading through
every parameter.

• Matching takes place against potentially transformed input, so often the raw input will
not contain the data in the form used for matching.

These problems are resolved when you use the logdata action. Have a look at the following
alert (just the emphasized part):

[Fri Dec 04 17:00:01 2009] [error] [client 192.168.3.1] ModSecurity: Access denied
with code 403 (phase 1). Pattern match "\\bon(abort|blur|change|click|dblclick
|dragdrop|end|error|focus|keydown|keypress|keyup|load|mousedown|mousemove
|mouseoutmouseover|mouseup|move|readystatechange|reset|resize|select
|submit|unload)\\b\\W*?=" at ARGS:p. [file "/home/ivanr/apache/conf/httpd.conf"]
[line "472"] [data "onload="] [hostname "192.168.3.100"] [uri "/"]
[unique_id "SxlAEcCoA2QAABLXHEAAAAAB"]

The capture action from the rule told the regular expression operator (@rx) to place the entire
matching area into the variable TX.0. The logdata:%{TX.0} part of the rule told the engine to
include the value of the TX.0 variable in the alert. The end result is that you now know, at a
glance, exactly what matched.

Note
At this point you may ask why we have logdata, when it is perfectly possible to use
variable expansion in the msg action. There’s only one reason: when you place a piece
of data as part of the message, a programmatic parser will not know about that. To
a computer, the entire message is just some text. But if you include the same data in
an alert with logdata, the same parser will know that it is something that originated
in input, and it can do something useful with it. It could, for example, highlight the
piece of data on the alert page.

Adding Metadata
Although some rules are simple and do not require much thought to understand them, many
aren’t. Also, even when the rule itself is simple, that does not mean that it will be easy to
understand what it does and why it does it. ModSecurity will generally try to add as much
metadata to alerts as possible. Consider the following rule, which gets the job done:

SecRule REQUEST_METHOD "!^(GET|HEAD)$" \
 phase:1,t:none,log,block

It restricts request methods to either GET or HEAD, which is suitable only for a static web site.
The rule will, on a match, produce the following alert:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding Metadata 101

[Thu Dec 03 20:02:50 2009] [error] [client 127.0.0.1] ModSecurity: …
Warning. Match of "rx ^(GET|HEAD)$" against "REQUEST_METHOD" required.…
[file "/home/ivanr/apache/conf/httpd.conf"] [line "464"]…
[hostname "192.168.3.100"] [uri "/"] [unique_id "SxgbacCoA2QAABC7HMgAAAAB"]

Alert messages contain quite a lot of information by default, but they do not provide enough.
For example, the default message generated by ModSecurity gives you some idea about what
the rule looks like, but it doesn’t tell you what the rule writer wanted to accomplish. This is
where metadata actions come into play. They are primarily used to document rules and make
them easier to handle. Here is the same rule as earlier, but with additional metadata:

SecRule REQUEST_METHOD "!^(GET|HEAD)$" \
 "phase:1,t:none,log,block,id:1001,rev:2,\
 severity:WARNING,msg:'Request method is not allowed'"

I have added four metadata actions:

• The id action assigns a unique identifier to the rule, making it possible to match an
alert to the rule that caused it. The addition of the ID also makes it possible for the
rule to be manipulated, either at configuration time or at runtime. The IDs are very
important, because they allow rule sets to be customized while leaving the original
configuration files intact (for example, using the SecRuleUpdateById and SecRuleRe-
moveById directives), which, in turn, allows for the automated upgrades of rule sets.

• The rev action (short for revision) is essentially a change counter, or a serial number: it
starts at 1 and increments by one every time a rule changes. The idea is to make it pos-
sible to determine, at a glance, whether a rule changed and, even better, to make it pos-
sible for a program (which wouldn’t be able to understand the differences between two
rule versions anyway) to do that.

• The severity action tells you how serious a detected problem is. ModSecurity adopt-
ed the syslog system of severities, which are listed in Table 18.1, “Severity values”. The
least serious severity is DEBUG (7) and the most serious one is EMERGENCY (1). However,
there are no clear guidelines for how to assign severities to rules, leaving each author to
adopt his or her own system.

• The msg action adds another message to the rule, which should explain the goal of a
rule, or its result.

The information in metadata actions is always used in alerts. The improved rule produces the
following alert:

[Thu Dec 03 20:11:25 2009] [error] [client 127.0.0.1] ModSecurity: Warning. …
Match of "rx ^(GET|HEAD)$" against "REQUEST_METHOD" required. …
[file "/home/ivanr/apache/conf/httpd.conf"] [line "465"] [id "1001"] [rev "2"] …
[msg "Request method is not allowed"] [severity "WARNING"] …
[hostname "192.168.3.100"] [uri "/"] [unique_id "SxgZZsCoA2QAABCYL9IAAAAA"]

Property of Girish Motwani <kushalbooks@yahoo.co.in>

102 Chapter 6: Rule Language Tutorial

That’s much better, but the alert still does not explain why we do not allow any request method
other than GET or HEAD. Let’s try again:

Do not allow request methods other than GET or HEAD. Allow
site does not currently use any other methods; restricting
the methods allowed reduces the attack surface.
SecRule REQUEST_METHOD "!^(GET|HEAD)$" \
 "phase:1,t:none,log,block,id:1001,rev:2,\
 severity:WARNING,msg:'Request method is not allowed because \
it is not used by the application',tag:HARDENING"

This latest batch of improvements added a long description of the rule functionality and also
improved the alert message. In addition, I also used the tag action to categorize the rule. Tags
are pieces of text that can be attached to rules. It is possible to attach one or more tags. By
convention, the first tag defines rule’s primary category, and all other tags define secondary
categories. Knowing the category for a rule helps you understand what the rule does. Cate-
gories also enable monitoring systems that collect alerts to construct pretty alert pie charts
with little effort (e.g., displaying how many alerts of each category occurred in a time period).
There are no clear guidelines for how to use tags, either. The Core Rule Set does use them
to categorize rules, but it does not document the categories (and does not guarantee that the
categories won’t change).

Embedded vs. Reverse Proxy Mode
ModSecurity doesn’t care whether it is deployed in embedded or reverse proxy mode. In the
reverse proxy mode, Apache takes care of the transfer of data to the backend server and back,
so there is very little for ModSecurity to worry about. There are only few small differences,
which I am listing here for reference:

1. In an embedded scenario, there will typically be a resource (a script or a file) that is
used to fulfill each request. ModSecurity rules can inspect the properties of such files
(the SCRIPT_* family of variables allows access). In the reverse proxy mode, virtually all
requests will be fulfilled by backend servers, which means that local resources won’t be
used and that the use of the variables that reference them makes little sense.

2. When embedded, ModSecurity gives access to the web server environment and error
log. When used in a reverse proxy, you still get access to both the environment and the
error log, but to those of the reverse proxy. The backend servers will have their own
environments and error logs, which ModSecurity can’t access.

3. Apache’s <Directory>, <DirectoryMatch>, <Files> and <FileMatch> configuration
contexts never match when used in a reverse proxy.

4. There are potential evasion issues when a reverse proxy is used in front of a backend
system that interprets URIs differently (e.g., if you have a Unix box in front of a Win-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 103

dows box). In such cases, you have to be very careful if you’re using the <Location>
configuration context. The <Location> configuration context is case-sensitive and rec-
ognizes only forward slashes, whereas other platforms may have filesystems that are
case-insensitive, or web servers that support the backslash as the URI path separator.

Table 6.1. Variables sensitive to operating mode

Variable Availability in reverse proxy mode

AUTH_TYPE Reverse proxy authentication

PATH_INFO Not available

ENV Reverse proxy environment

SCRIPT_BASENAME Not available

SCRIPT_FILENAME Not available

SCRIPT_GID Not available

SCRIPT_GROUPNAME Not available

SCRIPT_MODE Not available

SCRIPT_UID Not available

SCRIPT_USERNAME Not available

SERVER_ADDR Reverse proxy address

SERVER_NAME Reverse proxy name

SERVER_PORT Reverse proxy port

WEBSERVER_ERROR_LOG Reverse proxy error log

Summary
Now that you’ve completed the rule tutorial, you should have a good understanding of rule
writing. I thoroughly enjoyed working on this chapter, because it reminded me of every single
rule feature—even the ones I don’t use very often. It also reminded me of what it was like to
add all of these features to ModSecurity, one by one, across a period of several years.

In the next chapter, we turn our attention to ModSecurity’s existence within Apache. You’ll
learn the minimum necessary about how Apache handles its configuration files, which will
help you organize your rules effectively. You’ll also learn about configuration contexts and
inheritance, concepts that will allow you to both simplify your configuration and use different
configuration for different sites and applications in the same server.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

104

Property of Girish Motwani <kushalbooks@yahoo.co.in>

105

7 Rule Configuration
This chapter is the last in the series of chapters that cover the core language. Whereas the
previous chapter focused on how to write individual rules, this chapter focuses on the high-
er-level concepts:

• Apache configuration syntax

• How ModSecurity fits into Apache configuration files

• Configuration contexts and inheritance

• Rule manipulation

Apache Configuration Syntax
In the first instance, you should view Apache configuration as a single file that consists of
many lines of text. In reality, any configuration can be split among many files, but that’s only
for our convenience. To Apache, it’s just line after line after line.

If you take a look at a typical configuration file, you will find that every line falls into one of
three groups:

Empty lines
Empty lines (either those that are genuinely empty, or those that contain only white-
space characters) have no function as far as Apache is concerned, but they help us make
configuration files easier to read.

Comment lines
Comment lines have the # character as the first non-whitespace character; any text can
follow. Comment lines are often used to make configuration files user-friendly, pro-
viding documentation. They are also used to deactivate parts of configuration without
deletion, which is handy if you ever want to put the deactivated parts into use again.

Data lines
If a line is neither empty nor a comment line, it is a data line, and Apache will use it
in configuration building.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

106 Chapter 7: Rule Configuration

With all this in mind, let’s have a look at an example configuration fragment:

It's always useful to begin configuration with a comment.
Perhaps you have something important to say, for
example, what is this configuration for?

The one empty line above helps separate one comment from another.

What follows is a single data line.
SecRuleEngine On

Breaking Lines
In practice, configuration lines can be as long as you need them to be. There is an absolute
limit of 8192 bytes, but I’ve never encountered it and you probably won’t either. You will want
your lines to be on the short side anyway. Most configuration tweaking and maintenance takes
place remotely, so for best results, your lines need to fit within your shell window. Otherwise
you’ll have to do a lot of scrolling or use the automated word-wrapping facility, if your editor
supports it.

To split a long line into two, use a single backslash character followed by a newline:

SecRule ARGS KEYWORD \
 phase:1,t:none,block

Apache will interpret the previous two-line configuration snippet as a single line. You can
use this trick as many times as you wish, creating single logical lines that consist of multiple
actual lines.

You can place a break at any location, but some places are better than others. I prefer to indent
continued lines, but although my eye does not see the indentation, the whitespace actually
ends up in the line. Unless you break the line in a place where whitespace does not matter,
you will end up with a gap somewhere. The best place for a continuation is between directive
parameters, like in the previous example. With rules, the first two parameters are generally
short, so in most cases you will place the continuation after the second parameter, again like
in the example. The third parameter, action lists, is often too long to fit even on a broken line
—I often find myself breaking the parameter across lines. When you do that, the best place
for a break is just after a comma (that’s where whitespace does not matter).

Directives and Parameters
Every data line begins with a directive name, followed by zero or more parameters. Apache
supports the following directive parameter styles:

• No parameters.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Spreading Configuration Across Files 107

• A single boolean parameter, which allows for only On or Off values (e.g., SecRuleInher-
itance).

• One, two, or three free-form parameters, where each parameter has a separate
meaning; parameters other than the first one can be optional (e.g., SecRule and Se-
cRuleScript).

• Any number of free-form parameters, but all must have the same meaning (e.g., SecRe-
sponseBodyMimeType).

Directive parameter values are separated one from another using whitespace:

SecRule ARGS script

Exceptionally, if you have a value that contains one or more whitespace characters, you will
have to enclose the entire value in question marks, a signal that will enable Apache to under-
stand that there’s only one parameter inside:

SecRule RESPONSE_BODY "Error has occurred"

When there are no whitespace characters inside parameter values, you don’t have to use ques-
tion marks (even when the value contains a lot of unusual characters), but you can. Whatever
you do, just be consistent and always use the same approach.

Spreading Configuration Across Files
As your configuration keeps growing, you will find it more difficult to find your way around.
That is especially true with ModSecurity, because not only will you have the configuration,
but there’ll be many rules, some of which you may be writing yourself and some of which you
may be downloading from an external source.

Apache configuration always begins with a single file, but you are allowed to include other
configuration files using the Include directive. The following, for example, could be a skeleton
for your ModSecurity configuration:

Include conf/modsecurity/main.conf
Include conf/modsecurity/preamble.conf
Include conf/modsecurity/rules1.conf
Include conf/modsecurity/rules2.conf
Include conf/modsecurity/rules3.conf
Include conf/modsecurity/epilogue.conf

The paths I used in this example are all relative; Apache will resolve them using its main in-
stallation path (e.g., /usr/local/apache) as a starting point. Of course, you can use absolute
paths if you wish, but that usually means more typing.

The Include directive can also include several files in one go, when you use the Unix shell-
style wildcard characters. They are:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

108 Chapter 7: Rule Configuration

• ?: any one character

• *: zero or more characters

• \: escapes the character that follows

• []: exactly one character from the range (e.g., [0-9] for a digit)

The most common way to use this feature is to include all files that end with a particular suffix:

Include conf/modsecurity/*.conf

If an Include line resolves to multiple files, they will be included in alphabetical order. That’s
quite logical, but does not always work as desired, because we tend to choose names based
on the purpose the files serve. A common strategy is to use numbers in file names to control
the order in which they are included. The example Include line, used with the previously
discussed hypothetical ModSecurity configuration, wouldn’t include the files in the correct
order. But the inclusion will be done in the correct order if we rename the files to the following
ones:

00-main.conf
10-preamble.conf
20-rules1.conf
30-rules2.conf
40-rules3.conf
90-epilogue.conf

I have intentionally selected a larger range than needed (0–99) and left gaps between numbers,
because that will allow me to insert new files in between the existing ones.

Note
If you point Include to a directory, it will include all files in it, as well as all the files in
all the subdirectories. This particular feature is not very useful, because you will vir-
tually never have a directory that will contain just the configuration files; there’ll al-
ways be something else, and that something will eventually break your configuration.
For example, if your text editor automatically creates backup files, you may not get an
error when a backup file is included, but your configuration may fail in unexpected
ways.

Container Directives
Apache supports two directive types. The standard variant, which you have already seen, is
defined by a single configuration line (which may be split across several physical lines). The
other variant, container directives, uses a syntax similar to XML:

• They always come in pairs, which we call tags.

• The starting tag begins with < and ends with >.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Configuration Contexts 109

• When it comes to parameters, the starting tag uses the same format as all other direc-
tives.

• The ending tag begins with </ and ends with >.

• The ending tag cannot have parameters.

• The directives enclosed in the pair of tags (including, possibly, other container direc-
tives) are nested in a new configuration context.

Have a look at the following example:

This is the main configuration context

<VirtualHost demo1.example.com>
 # This is the configuration context
 # used by demo1.example.com

 <Location /special/>
 # This is the configuration context
 # used by demo1.example.com/special
 </Location>
</VirtualHost>

<VirtualHost demo2.example.com>
 # This is the configuration context
 # used by demo2.example.com
</VirtualHost>

The main configuration context exists in every configuration. There are two further Virtual-
Host contexts, nested in the main configuration context, and one Location context, nested in
one of the virtual hosts.

ModSecurity does not define any container directives itself (modules are allowed to create
such directives, too), but it relies heavily on all the container directives used by Apache.

Configuration Contexts
Apache allows for several types of configuration context using container directives.
Configuration contexts are a mechanism that allows you to apply configuration to only parts
of the server. The example in the previous section already demonstrated the three most com-
monly used configuration contexts, the main configuration context, VirtualHost and Loca-
tion, but there are others. Following is the complete list:

Main
The main (implicit) configuration context is used by default. Unless a configuration
uses explicit configuration contexts, the entire server will use the single configuration
context.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

110 Chapter 7: Rule Configuration

VirtualHost
The VirtualHost configuration context is used to create a new virtual host, possibly
using a configuration unique to it. Apache will automatically choose the correct virtual
host to use for a request, based on the host information supplied in every request.

Location and LocationMatch
The Location and LocationMatch directives both create a location-specific
configuration context. Apache will automatically choose the correct location
configuration context to use, based on the active virtual host and the information pro-
vided in every request’s URI.

Directory and DirectoryMatch
The Directory and DirectoryMatch directives both create a directory-specific
configuration context. This type of context makes sense only when there is no proxying,
because proxies typically don’t interact with the local filesystems. This type of context
will be used, but Apache determines which file on the local filesystem will be used to
serve a request.

Files and FilesMatch
The Files and FilesMatch directives both create a file-specific configuration context.
Apache automatically chooses the correct file-specific configuration context to serve a
request, but only after it determines which file will be used.

Note
There is practically no difference between the Location, Directory, and Files direc-
tives and their respective LocationMatch, DirectoryMatch, and FilesMatch counter-
parts. They each provide a different way to achieve the same effect. You should invest
some time in studying the Apache documentation to understand how and why these
directives are different.

Configuration Merging
When configuration is simple, a request will use only one configuration context, but when
configuration is complex, configuration contexts may overlap. For example, you may define
some rules for a specific virtual host and some further rules for a specific location. Those two
configuration contexts have to be merged into a single configuration context before a request
that triggers both of them can be handled. Merging always takes place between two contexts
at one time. Multiple merging operations will be performed when there are three or more
configuration contexts to merge.

There are two aspects to understanding merging:

• The parent-child relationship is significant, as is the order in which contexts are
merged. For example, if you define a setting in both contexts, one of the two values

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Configuration and Rule Inheritance 111

may be overwritten by the other. If there are three contexts to be merged, with a dif-
ferent value for the same setting in each context, you need to understand the order in
which merging operations will happen.

• Apache initiates the process, but every individual module handles the merging of its
configuration. Thus, to understand merging, you need to study the documentation of
each module you are using. Some simpler modules may not support merging at all,
while complex modules (e.g., ModSecurity) will use different merging strategies for
different configuration directives.

The order in which contexts are merged can be quite complex to understand if you want to
use every possible combination, but my advice is to simplify:

• Use only the VirtualHost and Location container directives.

• Remember that multiple Location containers (in the same virtual host) are processed
in the order in which they appear in the configuration file.

If you follow my advice, your configuration will start with rules in the main configuration
context, which will then be overwritten by the per-virtual-host configuration, which will then
be overwritten by the per-location configuration.

Configuration and Rule Inheritance
ModSecurity uses two inheritance (configuration merging) strategies. The first strategy is
used for the non-rule directives (e.g., SecRuleEngine); the second applies to the rules.

Configuration Inheritance
When it comes to the configuration settings, ModSecurity implements a straightforward
merging strategy:

• The child context inherits all configuration settings from the parent configuration con-
text.

• The settings explicitly defined in the child context will overwrite those defined in the
parent context.

Consider the following example:

SecRuleEngine On
SecAuditEngine RelevantOnly

<VirtualHost www.example.com>
 SecRuleEngine DetectionOnly
</VirtualHost>

The effective configuration of the main context is exactly as it appears in the configuration file:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

112 Chapter 7: Rule Configuration

SecRuleEngine On
SecAuditEngine RelevantOnly

As for the configuration of the one virtual host, you can work it out using the two previously
mentioned rules. First start with the configuration of the parent configuration context, then
use the value of the SecRuleEngine with DetectionOnly instead of the inherited On.

Warning
The only exception to the above rules is SecDefaultAction, whose values are not
inherited across configuration contexts. The default action list will always revert to
default in every new configuration context.

Rule Inheritance
Because rules cannot overwrite one another in the way predefined settings can, different merg-
ing rules apply to them:

1. The child context inherits the rules from the parent context.

2. The rules defined in a child context are added after the rules defined in the parent con-
text.

This, too, should be intuitive. For example:

SecRule ARGS K1 id:1001

<VirtualHost www.example.com>
 SecRule ARGS K2 id:1002
</VirtualHost>

In the previous example, there will be one rule defined in the main configuration context (the
rule 1001), but two in the virtual host (1001 first, then 1002).

The positioning of a child context within the parent context does not influence the
configuration of either context. The following segment, which uses a different layout, arrives
at the same configuration as the previous example:

<VirtualHost www.example.com>
 SecRule ARGS K2 id:1002
</VirtualHost>

SecRule ARGS K1 id:1001

This is because, in Apache, configuration processing is a two-step process: all configuration
contexts are created in the first step, with merging following in the second. From that point
of view, the two previous configuration snippets are practically identical.

Rule inheritance is a desired feature in most circumstances, because you will generally specify
your configuration in the main configuration context or in the virtual host container, and

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Location-Specific Configuration Restrictions 113

then use more specific per-location contexts for tweaking. In such circumstances, it makes
sense to begin with the rules specified in the parent configuration context. If you ever need to
completely redefine the rules that run in a specific location, ModSecurity allows you to disable
rule inheritance using the SecRuleInheritance directive:

SecRule ARGS K1 id:1001

<VirtualHost www.example.com>
 SecRuleInheritance Off
 SecRule ARGS K2 id:1002
</VirtualHost>

In the previous example, in the virtual host context, the configuration will contain only the
rule 1002, because rule inheritance was disabled.

Location-Specific Configuration Restrictions
There is a significant problem related to how the inheritance (of both configuration and rules)
is implemented in all versions of ModSecurity prior to 2.6.0: phase 1 takes place before any-
thing specified in a <Location> configuration container is evaluated. It’s an implementation
detail, but one with significant consequences:

• Phase 1 rules must be placed in the main configuration context, or within <Virtual-
Host> contexts.

• Any phase 1 rules placed in <Location> will be silently ignored.

• Any configuration changes made in <Location> will take effect, but only for whatever
happens in phase 2 and later.

The execution phases were implemented in this way in order to enable ModSecurity to act
as early as possible in the transaction lifecycle, the reasoning being that acting early might
help protect against flaws within Apache itself. As of the release of ModSecurity version 2.0.0,
there is now no case in which the early activation helped, but there were many cases of users
suffering from unexpected inheritance behavior. The early activation turned out to be a bad
decision.

SecDefaultAction Inheritance Anomaly
There is one exception to the configuration merging rules outlined in the previous sections:
the SecDefaultAction setting is not inherited. The exception is more a bug than anything else,
and can lead to some very subtle problems and unexpected behavior. For example:

SecDefaultAction phase:2,log,auditlog,deny
SecRule ARGS K1 id:1001

Property of Girish Motwani <kushalbooks@yahoo.co.in>

114 Chapter 7: Rule Configuration

<VirtualHost www.example.com>
 SecRule ARGS K2 id:1002
</VirtualHost>

In this example, the first line of the configuration will change the built-in default action list
to activate blocking. The change will be picked up by the rule 1001, which follows in the same
configuration context. The rule 1001 will thus block. In the nested configuration context for
the www.example.com virtual host, because there is no inheritance of SecDefaultAction, the
default action list will revert to the built-in value (phase:2,log,auditlog,pass). The rule 1002
will thus only warn, although it would be more intuitive if it blocked.

Rule Manipulation
When you write your own rules, it is logical to change them directly whenever you want to
make a change. There are cases where changing the rules directly is not desired. For example,
changing a third-party rule set effectively creates a fork and makes upgrades difficult. Mod-
Security has a mechanism or two that you can use to change rules without actually changing
them at their original location. Instead, you are either changing the rules after they are loaded,
at configure time, or as transactions are evaluated, at runtime.

Whenever possible, you should choose configure-time manipulation, because this approach
results with best performance. On the other hand, configure-time manipulation is quite lim-
ited, because it is unconditional; it results with a permanent modification of the rule within a
context. Runtime manipulation is slower, but flexible: with it, you can use the rule language
to evaluate a transaction in any way you choose and then make your modifications.

Removing Rules at Configure Time
ModSecurity supports a configure-time mechanism that allows the removal of a rule whose
ID you know. Alternatively, you can also remove the rule whose message you know. That
is achieved using SecRuleRemoveById and SecRuleRemoveByMsg, respectively. This example
demonstrates both directives:

SecRule ARGS K1 log,deny,id:123
SecRuleRemoveById 123

SecRule ARGS K2 "log,deny,msg:'Strange error occurred'"
SecRuleRemoveByMsg "Strange error occurred"

The SecRuleRemoveById is quite flexible, because it allows you to list any number of rule IDs
and rule ranges (e.g., 123–129), and it will remove all the rules that match. The SecRuleRe-
moveByMsg directive is similar in flexibility, because its one parameter is a regular expression
and also supports removing multiple rules at once.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Updating Rule Actions at Configure Time 115

Removing rules at configuration time as presented in the examples thus far of course does not
make any sense. But it will once I change the example to be slightly different. Imagine that
you have a third-party rule set that you want to use:

Include /opt/modsecurity/etc/thirdPartyRules.conf

When you deploy the rule set, you discover that there’s one rule that produces a high volume
of false positives. You are now faced with a dilemma: do you remove the offending rule or do
you live with it? If you do the former, you will be forced to assume the maintenance of the
rule set and you won’t be able to update it automatically. If you do the latter, you will have
to tolerate the false positives.

But, armed with SecRuleRemoveById and SecRuleRemoveByMsg and the IDs (or messages) ex-
tracted from the false positives, you can now remove the offending rule without actually mod-
ifying the third-party rule set:

Include /opt/modsecurity/etc/thirdPartyRules.conf
SecRuleRemoveById 123

Thus, we’ve established that removing rules at configuration time can be very useful if you are
unable, for some reason, to modify the original rule sets. You will find another application for
this technique if you ever need to customize your rule sets for parts of application, which is
done by creating a more specific configuration context in Apache:

<VirtualHost www.example.com>
 # Your ModSecurity configuration directives and rules here
 # ...

 # A more-specific configuration context in which
 # you don't want to run the rule 123
 <Location /moreSpecific/>
 SecRuleRemoveById 123
 </Location>
</VirtualHost>

Updating Rule Actions at Configure Time
Speaking of changing rules at runtime, sometimes you’ll encounter a rule that is not a false
positive, but that just does something you don’t want. For example, there may be a rule that
was hard-coded to block in a particular way, but you want to warn, or block in another way.
You can change what rule does on a match, at runtime, using the SecRuleUpdateActionById
directive:

SecRule ARGS K1 log,deny,id:123
...other rules here
SecRuleUpdateActionById 123 pass

Property of Girish Motwani <kushalbooks@yahoo.co.in>

116 Chapter 7: Rule Configuration

For simplicity, the previous example showed two rules in the same configuration context, but
—as discussed in the previous section—changing rule actions like that is only useful when
you can’t change the rules themselves, or when you don’t want to.

The ability to change rule actions was primarily designed to allow you to change disruptive
actions, which is why this ability supported changing of action lists only for standalone rules
or for the first rule in a chain. Starting with ModSecurity version 2.6, you can change action
lists in rule chains by specifying rule offset after rule ID and separating the two with a colon.
The following example updates the second rule in the chain:

SecRule ARGS K1 log,deny,id:123,chain
SecRule ARGS K2
...other rules here
SecRuleUpdateActionById 123:1 exec:/path/to/my.script

Updating Rule Targets at Configure Time
Starting with ModSecurity 2.6.0, you can change a rule’s target list at configure time. For
example, you may find that a rule is matching on a parameter that you know is not vulnerable,
and you want to stop the rule from looking at it:

SecRule ARGS K1 log,deny,id:123
...other rules here
SecRuleUpdateTargetsById 123 "!ARGS:username"

The second rule will find the first rule by ID and will then append the contents to the list
of inspection variables. At runtime, the list of target variables will be generated, with your
appended instructions removing the parameter username from inspection.

Removing Rules at Runtime
Armed with one or more rule IDs (or rule ID ranges), a rule that runs first can prevent other
rules from running, as in this example:

SecRule ARGS K1 nolog,pass,ctl:ruleRemoveById=123
...other rules here
SecRule ARGS K2 log,deny,id:123

If the first rule matches, the associated ctl action runs. Because the ctl action specifies
ruleRemoveById with 123 as parameters, the engine will make a note that it should not run
rule 123. Later in the phase, if the engine reaches rule 123, it will skip over it.

Updating Rule Targets at Runtime
Starting with ModSecurity version 2.6.0, you can change a rule’s target list at runtime, pro-
vided, of course, that you do so before the rule you want to change runs:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Configuration Tips 117

SecRule ARGS K1 nolog,pass,ctl:ruleUpdateTargetById=123;!ARGS:username
...other rules here
SecRule ARGS K2 log,deny,id:123

Configuration Tips
As described in this chapter, ModSecurity gives you great flexibility in how you can organize
your rules. There isn’t one best way, so you should use the approach that makes maintenance
easy for you. The following tips may help you to decide:

• The simplest approach is to define all your rules in the main server body. Then, if
there’s a need to do something differently in a particular site, you can take one of the
following actions:

• Append new rules, by placing them into the correct <VirtualHost> tag.

• Override the rules from the main server body using the techniques described earlier
in this chapter.

• Turn off rule inheritance completely, and then implement a new policy from scratch.

• The same advice applies equally to those cases in which you need to use different poli-
cies within one site, the only difference being that you will be using the <Location> tags
instead of <VirtualHost>.

• A different approach to rule organization is to leave the main server configuration
empty, configuring only the individual sites. That is fine too, as long as you under-
stand that there may be some requests that won’t fall within any of the sites (e.g., bad
requests), which ModSecurity won’t be able to see. In most cases it won’t matter, but
your view of web server activity may no longer be complete.

• If your sites require significantly different policies, define each policy in a separate file
(or several files, if the policy is really complex) and use the Include directive to activate
it. By doing that, you maximize reuse and minimize maintenance.

• Third-party rule sets are best left in their own files, allowing you to easily replace them
with a newer version. If they are well-written, you will be able to use the exclusion
techniques described earlier to change how they work without having to change the
files directly.

Summary
This chapter is the last in the series of chapters that discuss rule writing, a three-part journey
that started with an overview, followed with a step-by-step explanation of every rule feature,
and concluded with the high-level “glue” to tie everything together.

The rule writing was the second main topic of the book, after configuration. The following
seven chapters provide an in-depth look at the most important features, with each chapter

Property of Girish Motwani <kushalbooks@yahoo.co.in>

118 Chapter 7: Rule Configuration

generally focusing on only one aspect of ModSecurity. The only exception is Chapter 9, Prac-
tical Rule Writing, which contains a collection of topics that, although important, are not big
enough to be in chapters of their own.

The next chapter discusses persistent storage, quite possibly the single most important facility
in ModSecurity. You’ll soon see why.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

119

8 Persistent Storage
This chapter is about the persistent storage mechanism, which adds long-term memory to
ModSecurity. Without persistent storage, you are condemned to look at only one transaction
at a time without knowledge of what came before it, and of whether what came before it is
important. With persistent storage, you are able to construct data models that mirror the main
elements of the models used in applications. Some of the elements you will want to track are
IP addresses, application sessions, and application users.

The persistent storage mechanism in ModSecurity can be described as a free-form database.
You can have any number of tables, and within each table you can have any number of records.
There is no need for the records to be uniform. You don’t need to know in advance what you
will store, and you can even store different data in different records. The storage mechanism
was designed with ultimately transient data in mind, so each record has an expiry mechanism
built in, which enables the database to essentially keep itself in shape, automatically removing
expired records over time.

That’s all fine, I hear you say, but what is the persistent storage for? Here are a couple of things
that you can do, and which I will show you how to do in the remainder of this chapter:

• Track IP address activity, attack, and anomaly scores

• Track session activity, attack, and anomaly scores

• Track user behavior over a long period of time

• Monitor for session hijacking

• Enforce session inactivity timeouts and absolute life span

• Implement periodic alerting

• Detect denial of service and brute force attacks

I am sure that you will find plenty of additional scenarios in your own environment.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

120 Chapter 8: Persistent Storage

Manipulating Collection Records
In this section, I will cover the basics of collection manipulation. In most cases, the creation
is all you need to do and ModSecurity will take care of everything else. The rest of the section
will tell you the details you need to know when you want full control of the persistent storage
mechanism.

Creating Records
Creating a record is a matter of deciding on a key and invoking the initcol action. The IP
collection, for example, is almost always initialized unconditionally using the remote IP ad-
dress. Because the REMOTE_ADDR variable is always available, it is a good idea to initialize the
IP collection early, in phase 1:

Track IP addresses
SecAction phase:1,nolog,pass,initcol:IP=%{REMOTE_ADDR}

A collection can be initialized with a record only once per transaction. If there are multiple
invocations of the initcol action for the same collection (IP in the example), the first invo-
cation will be processed and all the subsequent invocations will be ignored.

Note
The case of the collection names used in initcol should not matter (i.e., IP should
be equivalent to ip, Ip, or iP), but due to a bug in earlier versions of ModSecurity,
it does matter on systems with case-sensitive filesystems (which probably constitute
the majority of ModSecurity deployments). To work around this problem, choose
a style for collection names and stick to it. Or upgrade to version 2.6.3, which fixes
this problem.

Although most collections use single variables for their keys, it’s perfectly possible to create
a key out of two or more variables. For example, sometimes you may get a large number of
users behind the same IP address but you may still want to attempt to track them individually.
Although there’s not a way to do that reliably, a more granular way would be to generate
record keys using a combination of IP address and a hash of the User-Agent field:

Generate a readable hash out of the User-Agent
request header and store it in TX.uahash
SecRule REQUEST_HEADERS:User-Agent ^(.+)$ \
 phase:1,pass,t:none,t:sha1,t:hexEncode,capture,setvar:tx.uahash=%{TX.0}

Initialize the IP collection using a
combination of IP address and User-Agent hash
SecAction phase:1,nolog,pass,initcol:IP=%{REMOTE_ADDR}_%{TX.uahash}

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Application Namespaces 121

Currently, it is possible to use only predefined collection names listed in Table 8.1, “Predefined
collections”. A future version of ModSecurity might allow you to use any name (as long as the
name does not clash with the built-in variables).

Table 8.1. Predefined collections

Collection Create with Description

GLOBAL initcol Global (per-server) data store

IP initcol Per-IP address data store

RESOURCE initcol Per-resource (URL) data store

SESSION setsid Per-session data store

USER setuid Per-user data store

The collection names are chosen to give clue to the intended usage and I trust you won’t have
any difficulty figuring out what it is. In any case, the rest of this section will show you how
to use each of the collections.

You will notice that not all collections can be created using the initcol action. The SESSION
and USER collections have a special initialization action each in order to support application
namespaces (described in the section called “Application Namespaces” in this chapter).

Note
There is no practical difference between creating a record and retrieving an existing
record. The initcol action will automatically create a new record if one does not
already exist.

Application Namespaces
A single server running ModSecurity can serve many different sites with their own separate
session IDs and user accounts. Although the session IDs will overlap only very rarely (assum-
ing that the ID generation algorithm is solid), there’s a good chance that the username colli-
sions will be quite frequent. For example, I imagine that every other application uses admin
for the main administration account.

ModSecurity uses application namespaces to deal with this problem, whereby you are able
to manually specify application boundaries. Each application then receives a private space
for its SESSION and USER collections, preventing overlaps. Applications are defined using the
SecWebAppId directive. Your goal should be to use one unique application ID per application.

For example:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

122 Chapter 8: Persistent Storage

<VirtualHost www.ssllabs.com>
 SecWebAppId ssllabs
</VirtualHost>

<VirtualHost www.feistyduck.com>
 SecWebAppId feistyduck
</VirtualHost>

The method in which application namespaces are implemented is very simple. For normal
collections, the collection name is used to name the file in which its data will be stored. For
namespace-aware collections, the namespace is part of the name. Assuming the configuration
as in the previous example, the data persistence directory may contain the following files:

default_SESSION.dir
default_SESSION.pag
feistyduck_SESSION.dir
feistyduck_SESSION.pag
IP.dir
IP.pag
ssllabs_SESSION.dir
ssllabs_SESSION.pag

You can see that there is one global database for the IP collection, but three databases for
sessions: one each for ssllabs and feistyduck applications, and one (default) for all other
applications together. Each database uses two files: the .dir files contains indexes, whereas
the .pag files contain data.

Initializing Records
The transparent record creation makes it difficult to perform record initialization, which you
will need if you’re writing a complex rule. The special record variable IS_NEW can be used to
determine whether a record is new. The idea is to allow you to test whether this variable is set,
and perform the initialization if it is:

Track IP addresses
SecAction phase:1,nolog,pass,initcol:IP=%{REMOTE_ADDR}

Set the default reputation value for new IP records
SecRule IP:IS_NEW "@eq 1" \
 phase:1,nolog,pass,setvar:IP.reputation=100

Controlling Record Longevity
The number of records in a collection can grow very quickly, especially in the cases where
you use one or more records per IP address and you have many users. To preserve space and

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Deleting Records 123

improve performance, you want your records to be deleted as soon as you no longer need
them, but no sooner.

The principal way to control the removal of records is through the inactivity timeout mecha-
nism that is built into the persistence subsystem. This mechanism ensures the removal of the
records that are no longer updated. Its operation is straightforward:

1. An inactivity timeout value associated with every record.

2. Records are scheduled for deletion as soon as they are created.

3. If a record is written to, the expiry time is recalculated using the current timeout value.
This means that every activity prolongs the lifetime of a record.

4. The default inactivity timeout value is 3600 seconds, but can be changed by assigning
a different value to the TIMEOUT collection variable (e.g., setvar:IP.TIMEOUT=300). A
different default value can also be selected using the SecCollectionTimeout directive.

It is a best practice to configure the desired inactivity timeout value only once, in a separate
rule that checks IS_NEW before making any changes (as demonstrated in the previous section).

Choose the correct value depending on what your collection does. Use the following list as
guidance:

• IP tracking: hours

• Session tracking: days

• User tracking: months

Deleting Records
In most cases, you will not need to delete collection records explicitly, because it’s much better
to configure the correct timeout period and let the garbage collection process deal with the
records after they expire. There are currently two ways in which records are deleted:

• A special garbage collection process runs periodically to examine all records in all
known collections (i.e., the collections that have been activated during the transaction
using initcol, setsid, or setuid). This process will remove all expired records.

• When an attempt to retrieve an expired record is made, the record is deleted and re-
placed with a new one.

If you know that you no longer need a record, it is more efficient to delete it immediately.
That’s possible to do, in a roundabout sort of way: you force the deletion by unsetting the
special KEY collection variable:

Delete record
SecAction phase:1,nolog,pass,setvar:!IP.KEY

Property of Girish Motwani <kushalbooks@yahoo.co.in>

124 Chapter 8: Persistent Storage

Detecting Very Old Records
Because the expiry time of a record can potentially be reset indefinitely, it is not impossible
to have a record survive for a very long time. Although ModSecurity won’t complain about a
record that is too old, it does record the creation time, making it possible to write a custom
rule to inspect it. My first attempt at detecting very old records was with the following Lua
rule (because I thought the calculations would be impossible to do in the rule language):

function main()
 -- Retrieve CREATE_TIME of the current IP record
 local createTime = m.getvar("IP.CREATE_TIME");

 -- If the variable is available and if the record is older
 -- than 24 hours, report the problem back
 if ((createTime ~= nil) and (os.time() - createTime > 86400)) then
 -- Retrieve the record key, which will
 -- make the error message more useful
 local key = m.getvar("IP.KEY");
 -- Match
 return "IP record older than 24 hours (" ..
 (os.time() - createTime) .. "s): " .. key;
 end

 -- No match
 return nil;
end

To use the rule, place it in a file called check_ip_create_time.lua, and call it with the follow-
ing:

Check the CREATE_TIME of the IP collection
SecRuleScript check_ip_create_time.lua phase:5,log,pass

If you wish, you can delete such old records (using the technique described in the previous
section), use the following rule instead:

Delete very old IP collection records
SecRuleScript check_ip_create_time.lua phase:5,nolog,pass,setvar:!IP.KEY

To learn more about writing rules in Lua, go to Chapter 12, Writing Rules in Lua.

After seeing my Lua rule, Brian Rectanus came up with the following rule language equivalent:

Detect very old IP records
SecAction "phase:5,log,pass,chain,\
 msg:'IP record older than 24 hours',\
 setvar:tx.exp=%{TIME_EPOCH},\
 setvar:tx.exp=-%{IP.CREATE_TIME}"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Collection Variables 125

SecRule TX:exp "@gt 86400"

Although the rule language does not support arithmetic operations in operators, it does sup-
port addition and subtraction in the setvar action. The previous example starts with an un-
conditional rule that uses two setvar actions to calculate the age of an IP record. The second
rule then checks it.

Collection Variables
What makes collections beautiful is the fact that they allow you to store any variable, and on
a whim. Once you initialize a collection (and thus obtain a record), you can use the setvar
action to create, modify, and delete collection variables. This section covers three additional
features that persistent collections support, but ordinary collections don’t:

• Built-in variables, which give you insight into how the record is used

• Variable expiry, which allows you to remove (expire) a variable at some point in the fu-
ture

• Variable value depreciation, which allows you to reduce the value of a variable over
time

Built-in Variables
Every persistent collection contains certain built-in variables, as seen in Table 8.2, “Built-in
collection variables”. The use of these variables is explained throughout this section, but they
are generally populated using the information provided by the underlying persistence mech-
anism, allowing you to understand how individual records are used.

Table 8.2. Built-in collection variables

Name Access Description

CREATE_TIME Read-only Record creation time, in seconds since January 1, 1970 (also known as Unix
epoch).

IS_NEW Read-only Flag that is set on a record that is yet to be persisted for the first time.

KEY Read/delete Record key. Can be unset, in which case the record will be deleted.

LAST_UPDATE_TIME Read-only The last record update time, in seconds (as above).

TIMEOUT Read/write The current timeout value, which will be used to extend the life of the record on
the next write. The timeout is initially set to 3600 seconds.

UPDATE_COUNTER Read-only Incremented every time a record is persisted.

UPDATE_RATE Read-only Record update rate, in requests per second. This value is calculated using the
CREATE_TIME, LAST_UPDATE_TIME, and UPDATE_COUNTER values.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

126 Chapter 8: Persistent Storage

Variable Expiry
The variable expiry mechanism enables you to schedule a variable to be expired (unset) at
some point in the future. It is a feature you can use whenever you want to execute an action
that will remain active for a period of time (long after the HTTP transaction that initiated
it is gone).

A good example for this feature is IP address blocking. Assuming that you have the IP collec-
tion initialized, IP address blocking requires two rules:

1. One rule that will decide when to block an IP address, and set the appropriate flag in
the IP collection (let’s use IP.blocked).

2. The second rule that will block transactions originating from the flagged IP addresses.

For example:

Detect attack and install a persistent IP address block
SecRule ARGS attack \
 "phase:2,log,block,msg:'Blocking IP address for 60s',\
 setvar:IP.blocked,\
 expirevar:IP.blocked=60"

Enforce a persistent IP address block
SecRule IP:blocked "@eq 1" \
 "phase:2,block,msg:'Enforcing earlier IP address block'"

Note
If you want blocking to remain active for a very long period of time, make sure that
the IP collection timeout value is longer than the blocking period. If an IP collection
record expires, the block will expire with it.

Variable Value Depreciation
Variable expiry works well for things that are black or white, right or wrong. But when you
have shades of gray, you’ll need to use variable value depreciation (action deprecatevar),
which is designed to work with the variables that contain numerical values. When you em-
ploy depreciation, the numerical value of your choice is gradually reduced over time until it
reaches zero. This mechanism is usually used to work with anomaly or attack scores.

Note
The deprecatevar action is implemented in a different way from expirevar. Whereas
expirevar uses a “fire-and-forget approach” and needs to run only once, the depre-
catevar action needs to be invoked continuously—in most cases on every request—
for as long as you need the depreciation to remain active. The recommended ap-
proach for expirevar is to use it in the same rule that creates (or updates) a variable.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Implementation Details 127

The recommended approach for deprecatevar is to use it unconditionally (with Se-
cAction) in phase 5.

The deprecatevar action takes two positive integer parameters, separated by a forward slash.
The first number defines by how much variable value will be reduced in a single change. The
second number defines the duration between changes. Together, the parameters define the
speed of depreciation. In the following example, the value of the IP.score variable will be
reduced by 1 every 5 seconds:

SecAction phase:5,nolog,pass,deprecatevar:IP.score=1/5

The way in which you choose the numbers matters, because the reduction in value is made
at the discrete intervals defined by the duration parameter. That means that although both
1/5 and 60/300 will both result in the same variable value after 300 seconds, in the first case
there would be 60 decrements of 1 at 5-second intervals, whereas in the second case you will
get just one decrement of 60 after 300 seconds.

For a complete example using depreciation, consider the following implementation of IP ad-
dress attack scoring:

Increment IP address attack score with every attack
SecRule ARGS attack \
 phase:2,log,pass,setvar:IP.score=+1

Block IP addresses whose attack score is greater than 10
SecRule IP:score "@gt 10" \
 "phase:2,log,block,msg:'IP address anomaly score over 10 (%{IP.score})'"

Decrement attack score by 1 every 5 seconds
SecAction phase:5,nolog,pass,deprecatevar:IP.score=1/5

If you look at the debug log, you may find the following two lines for each variable being
depreciated:

[9] Deprecating variable: IP.score=1/5
[4] Deprecated variable "IP.score" from 17 to 15 (10 seconds since last update).

As you would expect, depreciation does not occur when there is no change in the value. In
that case, you would see the following message in the debug log:

[9] Not deprecating variable "IP.score" because the new value (1) is the same as …
the old one (1) (2 seconds since last update).

Implementation Details
Persistent storage in ModSecurity is implemented using the SDBM library, which is part of the
Apache Portable Runtime (APR). SDBM was selected because it was already available (Mod-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

128 Chapter 8: Persistent Storage

Security depends on APR anyway) and because it allows for the control of concurrent access.
The latter is very important, because in ModSecurity we deal with potentially many concur-
rent transactions.

Retrieving Records
Collection records are retrieved when the initcol action is encountered. Assuming that the
collection was not previously initialized, ModSecurity will look for the appropriate SDBM
database and fetch the record with the corresponding key. You can examine the process when
you increase the debug log level to 9:

[9] Resolved macro %{REMOTE_ADDR} to: 192.168.3.1
[9] Read variable: name "__expire_KEY", value "1263975870".
[9] Read variable: name "KEY", value "192.168.3.1".
[9] Read variable: name "TIMEOUT", value "3600".
[9] Read variable: name "__key", value "192.168.3.1".
[9] Read variable: name "__name", value "IP".
[9] Read variable: name "CREATE_TIME", value "1263970741".
[9] Read variable: name "UPDATE_COUNTER", value "21".
[9] Read variable: name "counter", value "21".
[9] Read variable: name "LAST_UPDATE_TIME", value "1263972270".
[4] Retrieved collection (name "IP", key "192.168.3.1").
[9] Recorded original collection variable: IP.UPDATE_COUNTER = "21"
[4] Added collection "IP" to the list.

The first line is the clue as to what the key used was. Following will be one line for every
variable retrieved from the database. You will notice that some variable names begin with
two underscore characters. Those variables are internal to ModSecurity, and you can probably
guess from their names what they do. The variables with names that begin with the __expire_
prefix are created by the expirevar action to keep track of when individual variables need to
be expired.

Storing a Collection
All the records initialized during a transaction will be persisted after the transaction com-
pletes. In the simpler of the two cases, persistence will be a straightforward write to the data-
base:

[9] Wrote variable: name "__expire_KEY", value "1263975870".
[9] Wrote variable: name "KEY", value "192.168.3.1".
[9] Wrote variable: name "TIMEOUT", value "3600".
[9] Wrote variable: name "__key", value "192.168.3.1".
[9] Wrote variable: name "__name", value "IP".
[9] Wrote variable: name "CREATE_TIME", value "1263970741".

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Storing a Collection 129

[9] Wrote variable: name "UPDATE_COUNTER", value "22".
[9] Wrote variable: name "counter", value "22".
[9] Wrote variable: name "LAST_UPDATE_TIME", value "1263972270".
[4] Persisted collection (name "IP", key "192.168.3.1").

Note
If, while looking at your debug logs, you discover that an initialized collection is not
being persisted, that’s because nothing was changed in it. When there are no changes
in the record, the copy in storage will be identical to that in memory, so there is no
need to perform the expensive write operation.

Because the writing is delayed until the end of a transaction and because there’s no record
locking (there can’t be any, because it would create a terrible bottleneck), there’s always a
race condition, because of the time gap between the moment a rule retrieves a record and the
moment it writes it back to storage. By the time a record is persisted, some other request may
have changed the stored record values.

ModSecurity uses a double-retrieval mechanism with write-locking to deal with the concur-
rent access problem. It performs the following operations:

1. Locks database

2. Retrieves the record again to obtain the up-to-date values

3. For every numerical value that was changed, calculates the difference between what it
originally saw and what it has

4. Updates the numerical values in the record retrieved in step 2 by making relative
changes using the calculation from the previous step

5. Writes record to disk

6. Unlocks database

The debug log will show something similar to the following (note the delta calculations in
between the read and write operations):

[9] Re-retrieving collection prior to store: IP
[9] Read variable: name "__expire_KEY", value "1263975870".
[9] Read variable: name "KEY", value "192.168.3.1".
[9] Read variable: name "TIMEOUT", value "3600".
[9] Read variable: name "__key", value "192.168.3.1".
[9] Read variable: name "__name", value "IP".
[9] Read variable: name "CREATE_TIME", value "1263970741".
[9] Read variable: name "UPDATE_COUNTER", value "21".
[9] Read variable: name "counter", value "21".
[9] Read variable: name "LAST_UPDATE_TIME", value "1263972270".
[4] Retrieved collection (name "IP", key "192.168.3.1").
[9] Delta applied for IP.UPDATE_COUNTER 21->22 (1): 21 + (1) = 22 [22,2]

Property of Girish Motwani <kushalbooks@yahoo.co.in>

130 Chapter 8: Persistent Storage

[9] Delta applied for IP.counter 21->22 (1): 21 + (1) = 22 [22,2]
[9] Wrote variable: name "__expire_KEY", value "1263975870".
[9] Wrote variable: name "KEY", value "192.168.3.1".
[9] Wrote variable: name "TIMEOUT", value "3600".
[9] Wrote variable: name "__key", value "192.168.3.1".
[9] Wrote variable: name "__name", value "IP".
[9] Wrote variable: name "CREATE_TIME", value "1263970741".
[9] Wrote variable: name "UPDATE_COUNTER", value "22".
[9] Wrote variable: name "counter", value "22".
[9] Wrote variable: name "LAST_UPDATE_TIME", value "1263972270".
[4] Persisted collection (name "IP", key "192.168.3.1").

The locking and the delta calculations are necessary in order to ensure the integrity of the per-
sisted numerical values. Without them, multiple concurrent transactions would overwrite one
another’s values, and the numerical values would be incorrect. By remembering the changes,
rather than absolute values, ModSecurity ensures that numerical values are always correctly
persisted. Unfortunately, there is no way to ensure the integrity of nonnumerical values in
the concurrent access scenario (not without severe performance degradation, that is). On the
positive side, nonnumerical values are not frequently used in persistent storage and, when
they are, they are used in situations when there is little concurrent access.

Record Limits
The SDBM library imposes an arbitrary limit of 1008 bytes on the combined size of key length
and record length. If you break this limit, the persistence operation will fail and you’ll get the
following message in your logs:

[1] Failed to write to DBM file "/tmp/IP": Invalid argument

ModSecurity uses about 200 bytes for its needs (mostly the built-in collection variables),
which means that you practically have about 800 bytes left. Although 800 bytes does not sound
like much, it’s enough in most situations, because rules generally only use numerical values
in persistent storage.

Note
If you are running out of space, avoid using very long keys. Keys are stored in three
copies: two copies are used by ModSecurity and one copy is used by SDBM itself. If
everything else fails, you can always resort to “brute force” and recompile APR and
APR-util to increase the size limit to a much higher value. Look for PAIRMAX 1008 in
the SDBM source code in APR-util.

As a rule of thumb, you should avoid to store anything user-controlled in persistent storage.
For example, you might want to store the value of the User-Agent request header in a SESSION
collections to check for possible session hijacking attacks, but that value can be up to approx-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Applied Persistence 131

imately 8190 bytes long (that’s Apache’s default request header limit). In such situations, it is
better to store a value derived from the User-Agent value, instead of the value itself.

Practically speaking, you can use the md5 and sha1 transformation functions, which will “com-
press” input of any size to a fixed-length value. Because the output of those two transforma-
tion functions is binary, it is a good idea to follow with a hexEncode transformation, making
the final value printable. Following is the rule from an earlier example, which takes the value
of the User-Agent request header and transforms it into a value (stored in TX.uahash) that can
be used with persistent storage:

SecRule REQUEST_HEADERS:User-Agent !^(.+)$ \
 phase:1,t:none,t:sha1,t:hexEncode,capture,setvar:tx.uahash=%{TX.0}

Applied Persistence
In this section, I will apply the previously discussed persistence techniques to several real-life
problems:

• Periodic alerting

• Denial of service attack detection

• Brute force attack detection

The combination of the persistence facilities and the rule language is what makes the examples
that follow particularly interesting. The techniques you learn in the remainder of this chapter
will help you take your own rules to the next level!

Periodic Alerting
Periodic alerting is a technique useful in the cases when it is enough to see one alert about a
particular situation, and when further events would only create clutter. You can implement
periodic alerting to work once per IP address, session, URL, or even an entire application.
First you choose the collection you want to work with, and then you create a special flag whose
presence will tell you that an alert needs to be suppressed.

The best case for periodic alerting can be made when you’re dealing with problems that are
not caused by an external factor, which typically happens with rules that perform passive vul-
nerability scanning. Such rules detect traces of vulnerabilities in output, and alert on them.
They are quite handy because they can alert about problems before they are exploited. If pas-
sive scanning rules are stateless, they may cause far too many alerts, because they will report
a problem whenever they see it, which may happen very frequently on busy sites. If you are
faced with such a problem, you will have probably seen the first couple of alerts, and, even
if you are not doing anything to deal with the discovered issue, you don’t really want to be
reminded about it. That annoyance can be solved by updating passive vulnerability scanning
rules to alert only once, as I will demonstrate.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

132 Chapter 8: Persistent Storage

To start with, here’s a simple rule that detects PHP version leakage in the X-Powered-By re-
sponse header:

SecRule RESPONSE_HEADERS:X-Powered-By !^$ \
 "phase:3,log,pass,msg:'X-Powered-By information leakage'"

PHP version leakage is a minor issue that is good to know about, but not with an alert on
every web server hit. The leakage is caused by a site-wide problem in the configuration of
the PHP engine, which means that we can use the GLOBAL collection. The idea is to create a
special record (in the GLOBAL collection) just for this one problem and use it to keep track of
the previous activity.

The following rule will detect X-Powered-By information leakage, but warn about the problem
only once every 60 seconds:

SecRule RESPONSE_HEADERS:X-Powered-By !^$ \
 "chain,phase:5,log,pass,id:1001,\
 msg:'X-Powered-By information leakage(%{TX.temp} hits since last alert)',\
 initcol:GLOBAL=1,\
 setvar:GLOBAL.id1001_counter=+1"
SecRule &GLOBAL:id1001_flag "@eq 0" \
 "setvar:GLOBAL.id1001_flag,\
 expirevar:GLOBAL.id1001_flag=60,\
 setvar:TX.temp=%{GLOBAL.id1001_counter},\
 setvar:GLOBAL.id1001_counter=0"

I will walk you through what the rule does:

1. The first rule checks whether the problem exists by looking for a nonempty X-Pow-
ered-By response header.

2. Upon successful detection, two actions are carried out:

a. A record in the GLOBAL collection is initialized, using the constant key 1. By per-
forming the initialization only after a match, we enhance performance of the re-
quests that do not have the leakage problem.

b. The counter value is increased by 1. Even if we don’t alert on the problem, we keep
track of how many violations there were.

3. The second rule—which, being part of the same chain, is tested only after the first rule
matches—tests the GLOBAL.id1001_flag variable, which will tell us if we’ve alerted in
the previous period of time. The presence of the variable is a sign that we shouldn’t
alert (and you will see why in the next step). If the variable is not present, the rule will
match, and the following three actions will be carried out:

a. The GLOBAL.id1001_flag variable will be created.

b. The GLOBAL.id1001_flag will be set to expire 60 seconds in the future.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Periodic Alerting 133

c. The value of the GLOBAL.id1001_counter variable is preserved in the temporary
variable TX.temp.

d. The counter (GLOBAL.id1001_counter) is then reset to zero.

e. The match of the second rule will cause the entire chain to match and create an
alert. Note how the chain message makes use of the temporary variable TX.temp,
which stored the earlier value of the counter (which we’ve reset since).

Note
If you don’t need to track how many alerts were suppressed, omit the incrementa-
tion of the GLOBAL.id1001_counter, which will save you a write to disk for every sup-
pressed alert (which could be a write for every request to your site, depending on the
nature of the problem being detected).

Even with this elaborate scheme to implement periodic alerting, it is possible to get more
than one alert for a problem that occurs very often (e.g., on every request). This is because
processing a request takes time, so it is entirely possible for two requests to execute so close
to each other that they don’t realize the alert has already taken place. We are minimizing the
chances of that happening by choosing phase 5 for the rule and using late initialization. Col-
lections are persisted right after the rules in phase 5 complete, which means that the window
of opportunity for the collision is minimized.

If you need suppression to work per application script, use the RESOURCE collection. The fol-
lowing rule is identical to the previous example, except that the collection initialization is
slightly different:

SecRule RESPONSE_HEADERS:X-Powered-By !^$ \
 "chain,phase:5,log,pass,id:1002,\
 msg:'X-Powered-By information leakage(%{TX.temp} hits since last alert)',\
 initcol:RESOURCE=%{SCRIPT_FILENAME},\
 setvar:RESOURCE.id1002_counter=+1"
SecRule &RESOURCE:id1002_flag "@eq 0" \
 "setvar:RESOURCE.id1002_flag,\
 expirevar:RESOURCE.id1002_flag=60,\
 setvar:TX.temp=%{RESOURCE.id1002_counter},\
 setvar:RESOURCE.id1002_counter=0"

The idea with the RESOURCE collection is that it will give you access to a record that is unique
for the script that will be processing the request. When ModSecurity is embedded in a web
server, initialize the RESOURCE collection in phase 2 using SCRIPT_FILENAME (which will map
to the actual script on disk, no matter what the request URI looks like). In a proxy situation,
you can use only the REQUEST_FILENAME variable, but bear in mind that there are situations
in which a single script is used for an unlimited number of request URIs. A proxy cannot dif-
ferentiate between /index.php/1001 and /index.php/1002 and sees them as two different re-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

134 Chapter 8: Persistent Storage

quest URIs. A web server would see them as only one script (when you use SCRIPT_FILENAME).
Furthermore, it is possible that you will have two locations (e.g., /index.php in two different
virtual hosts). To avoid the chances for collision, you should also use the current hostname
as part of the key.

Denial of Service Attack Detection
Generally speaking, reacting to denial of service attacks from within a web server is less than
ideal. When the target of an attack is the web server itself (e.g., the attacker is trying to over-
whelm it by sending a large number of requests or keeping a large number of connections
open), by the time a request reaches the web server, it will have already caused the damage.
Denial of service attacks based on brute force should be handled by the network layer, where
you are able to minimize the attack impact.

When it comes to attacks against applications, that’s another story, and you may actually find
ModSecurity very useful. Application attacks rely on being able to send cheap requests (in
terms of resources needed to send them) to applications which will use disproportionately
more resources (CPU, I/O, and RAM) to process them. Any application function that per-
forms intensive work is a good attack choice. For example, most simple database-backed sites
exercise no control over how many database connections they open and are easy prey. Send
more than a handful requests to such a site, and it will suddenly start to malfunction.

The simplest approach to detecting DoS attacks is to check the value in the UPDATE_RATE vari-
able of a collection. But because collections are persisted only when there’s a change to record,
you need to ensure that the collection you are using is written to on every request that matters.
A simple way to do that is to increment a counter on every request. Here’s an example using
the IP collection:

SecAction phase:1,nolog,pass,setvar:IP.counter=+1
SecRule IP:UPDATE_RATE "@gt 10" \
 "phase:1,block,msg:'Request rate too high for IP address: %{IP.UPDATE_RATE}'"

I have one concern about this approach, though: I don’t like the fact that the IP collection is
written to on every request. Unless you are already doing something with the IP collection,
the constant updating of the collection will add to your overall resource consumption. That
does not mean that it’s not going to work well, but it does mean that you need to watch it.

It is possible to improve the performance by focusing only on those requests that really matter.
If you examine your access logs, chances are good that you will find that only a fraction of
all requests are forwarded to the application, with the rest being requests for static resources,
such as images, JavaScript, and CSS files. Static files are delivered efficiently by the web server
and you can probably avoid tracking them in ModSecurity. By amending the first rule in
the previous example to increment only on a non-static request (using an unreliable method

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Denial of Service Attack Detection 135

of checking the file extension, which will be sufficiently good in this case), we increase the
efficiency of our application DoS detection.

For example:

Only increment the counter if the
request is for a non-static resource
SecRule REQUEST_FILENAME "!\.(jpg|png|gif|js|css|ico)$" \
 phase:1,nolog,pass,setvar:IP.counter=+1

Note
The UPDATE_RATE value is calculated over the lifetime of a record. If you keep the
records alive for a very long period of time, a spike of activity (which may or may not
be a DoS) will not affect the overall rate significantly.

A recent addition to ModSecurity is the DURATION variable (not yet released, but available in the
development trunk), which you can use to discover how long a transaction has been running.
You can use that information to keep track of how much time the web server is spending, per
IP address, session, or user.

The following example keeps track of the resources spent on every IP address:

Block the IP addresses that use too
much of the web server's time
SecRule IP.load "@gt 10000" \
 "phase:1,t:none,block,\
 msg:'IP address load too high: %{IP.load}'"

Keep track of how much web server
time is consumed by each IP address
SecAction "phase:5,nolog,pass,\
 setvar:IP.load=+%{DURATION},\
 deprecatevar:IP.load=250/1"

You mustn’t forget to use the deprecatevar action to ensure that the load value goes down
during the periods of inactivity. Otherwise, the load will keep increasing and the block will
never drop. Please note that the values I used in the example are completely arbitrary. They
are not likely to work on your sites. Use the trial and error approach until you arrive at the
values that work for you. Similarly, keep in mind that a client’s communication speed may
affect the time he or she spends with a transaction. Excessively large pages may have skewed
DURATION values. If you are buffering response bodies, I suggest that you move the tracking
rule from phase 5 (which occurs after a transaction is complete) to phase 4 (which occurs just
before a response body is sent).

Finally, if you get tired looking at the debug log as you test your persistent rules, consider
writing a content injection rule (see Chapter 11, Content Injection, for more information) to

Property of Girish Motwani <kushalbooks@yahoo.co.in>

136 Chapter 8: Persistent Storage

append the IP address update rate (or load) to the end of each site page. You can even use such
a rule in production if you make the appended content invisible by putting it inside a HTML
comment. Then just view the HTML source whenever you need to find out the value.

Brute Force Attack Detection
Brute force attack detection is conceptually similar to the approach used to detect denial of
service attacks. You keep track of the authentication failures and you react when you feel an
attack is taking place. Performance-wise, brute force detection uses less resources, because the
rules only have to work when authentication takes place.

To start with, you need to understand how authentication failure is manifested, because the
condition will be different for every application. You do that by using the application, record-
ing all traffic to the logging script, and performing both successful and unsuccessful authen-
tication. Your goal is to write a rule that will trigger on a failure, but not on success.

Let’s assume that we’re dealing with an application that uses the URL /login.php for all au-
thentication requests: on success, the application redirects the user to /index.php. On failure,
the application redirects back to /login.php, asking the user to try again. Our brute force at-
tack detection rule could thus begin with:

<Location /login.php>
 # Check for authentication failure
 SecRule RESPONSE_HEADERS:Location ^/login.php \
 "phase:5,t:none,log,pass,msg:'Failed authentication'"
</Location>

Once we verify that this works as expected, we can move to manage the counters. Let’s start
with the IP collection first. The following rule will keep a per-IP address counter and alert
only after seeing 25 authentication attempts, when it will clear the counter and start over:

<Location /login.php>
 # Check for authentication failure, maintaining
 # a counter that keeps track of how many failures were
 SecRule RESPONSE_HEADERS:Location ^/login.php \
 "phase:5,chain,t:none,setvar:IP.bf_counter=+1,nolog,pass,\
 msg:'Multiple authentication failures from IP address'"
 SecRule IP:bf_counter "@gt 25" t:none,setvar:!IP.bf_counter
</Location>

What we really want to do is block access for a period of time when too many authentication
attempts are seen. We can do that with an additional flag and a rule that checks for it:

<Location /login.php>
 # Enforce an existing IP address block
 SecRule IP:bf_block "@eq 1" "phase:2,block,\
 msg:'IP address blocked because of suspected brute force attack'"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Brute Force Attack Detection 137

 # Check for authentication failure
 SecRule RESPONSE_HEADERS:Location ^/login.php \
 "phase:5,chain,t:none,nolog,pass, \
 msg:'Multiple authentication failures from IP address',\
 setvar:IP.bf_counter=+1"
 SecRule IP:bf_counter "@gt 25" "t:none,\
 setvar:IP.bf_block,\
 setvar:!IP.bf_counter,\
 expirevar:IP.block=3600"
</Location>

And there, we have our brute force detection rules, which will block anyone who misbehaves
for one hour. I will now proceed to implement another layer of brute force attack defence,
keeping track of the per-username authentication failures. This is possible, but with some
restrictions, as you shall soon see.

For the second layer of defense, we need a place to store the second counter, of which we need
to keep track no matter which IP address is used for access. It is only natural to use the USER
collection, which was designed for that sort of thing—keeping track of information on a per-
user basis:

<Location /login.php>
 # Enforce an existing IP address block
 SecRule IP:bf_block "@eq 1" \
 "phase:2,deny,\
 msg:'IP address blocked because of suspected brute force attack'"

 # Retrieve the per-username record
 SecAction phase:2,nolog,pass,initcol:USER=%{ARGS.username}

 # Enforce an existing username block
 SecRule USER:bf_block "@eq 1" \
 "phase:2,deny,\
 msg:'Username blocked because of suspected brute force attack'"

 # Check for authentication failure and increment counters
 SecRule RESPONSE_HEADERS:Location ^/login.php \
 "phase:5,t:none,nolog,pass,\
 setvar:IP.bf_counter=+1,\
 setvar:USER.bf_counter=+1"

 # Check for too many failures from a single IP address
 SecRule IP:bf_counter "@gt 25" \
 "phase:5,pass,t:none,\
 setvar:IP.bf_block,\
 setvar:!IP.bf_counter,\
 expirevar:IP.block=1800"

 # Check for too many failures for a single username

Property of Girish Motwani <kushalbooks@yahoo.co.in>

138 Chapter 8: Persistent Storage

 SecRule USER:bf_counter "@gt 25" \
 "phase:5,t:none,pass,\
 setvar:USER.bf_block,\
 setvar:!USER.bf_counter,\
 expirevar:USER.block=1800"
 </Location>

This example uses a user-supplied value (whatever is in the username parameter) as a collec-
tion key. In such situations, you are advised to always check that the user-supplied data is safe.
You will find more information about the dangers of using user-supplied data in the rest of
this chapter.

Session Management
Session management is one of the more fun aspects of ModSecurity, and is an area where
ModSecurity can be truly useful. The reason for that is simple: unlike with other methods,
with sessions you get to understand and monitor in practice what one single user does. The
usefulness of session tracking will vary depending on what you’re protecting, but it’s best
used with applications that use sessions to enable the users to establish a “relationship” with
the application. Because sessions are required to use an application in a meaningful way, the
adversaries are compelled to use them, too, and that makes monitoring easier.

Initializing Sessions
Before you start to think about session initialization, think about how many applications you
have on the same server. If you have more than one, you must create a separate application
namespace using the SecWebAppId directive. Even if you have only one application, it doesn’t
hurt to use SecWebAppId, because it causes the application ID to be recorded in audit logs.
Over time, you may add more applications, in which case it would be useful to know which
audit log entries belong to which application.

To initialize a session, you need to do two things:

Extract session token from request
Most applications use cookies to transmit session tokens. Session cookies’ names vary,
but they should be easy to identify, because they usually contain a large, random-look-
ing string (for example, 64c24d4e35dc753cd085ca574def4131). A small number of ap-
plications embed session tokens in their URLs, and they are even easier to identify, be-
cause the large string can be seen in your browser’s URL bar.

Configure sufficient session lifetime
ModSecurity collections have the default value of 3600 seconds, but that’s too short
for sessions, which may remain active for hours under normal circumstances. Some
faulty applications might even not impose a limit on session duration. To be able to
monitor sessions throughout their life, you need to choose a timeout value that is at

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Initializing Sessions 139

least as long as the duration of the longest possible application session. In most cases,
however, you should aim the SESSION collection to remain alive for several times the
maximum duration of the application session, because that will allow you to perform
reliable session blocking. For the examples in this section, I will use 48 hours (172,800
seconds) as the SESSION collection timeout value.

To initialize a session from a cookie, you first need to identify the correct cookie. Have a look
at one request that contains session information:

GET /index.php HTTP/1.1
Host: 192.168.3.100:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.9.1.7) …
Gecko/20091221 Firefox/3.5.7 (.NET CLR 3.5.30729)
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: PHPSESSID=64c24d4e35dc753cd085ca574def4131
Pragma: no-cache
Cache-Control: no-cache

I’ve emphasized the session cookie, and you can see that it is very easy to identify the session
token. In the effort to extract the session token, you won’t have to deal with the request header
directly. Because ModSecurity parses inbound cookies, you’ll be able to retrieve it by name
using the REQUEST_COOKIES variable. Session initialization is thus as simple as:

Initialize SESSION from PHP session token
SecRule REQUEST_COOKIES:PHPSESSID !^$ \
 "phase:2,nolog,pass,\
 setsid:%{REQUEST_COOKIES.PHPSESSID},\
 setvar:SESSION.TIMEOUT=172800"

It is advisable, however, to verify session tokens before you use them as collection keys. Any-
thing user-supplied should be validated first, because you never know what you will get. For all
you know, an attacker may try to bypass your session defences by submitting multiple session
cookies. Also, if the token is invalid, then it will probably not be recognized by the application,
in which case you probably don’t have any reason to use it either.

In the following example, we first perform the necessary checks (and block if something suspi-
cious is discovered), then use the value of the session token to initialize the SESSION collection:

Check that we have at most one session token
SecRule &REQUEST_COOKIES:PHPSESSID "@gt 1" \
 "phase:2,log,block,msg:'More than one session token'"

Catch invalid PHP session tokens

Property of Girish Motwani <kushalbooks@yahoo.co.in>

140 Chapter 8: Persistent Storage

SecRule REQUEST_COOKIES:PHPSESSID !^[0-9a-z]{32}$ \
 "phase:2,log,block,msg:'Invalid session token'"

Initialize SESSION from PHP session token
SecRule REQUEST_COOKIES:PHPSESSID ^[0-9a-z]{32}$ \
 "phase:2,nolog,pass,\
 setsid:%{REQUEST_COOKIES.PHPSESSID}"

Set the default timeout value for new SESSION records
SecRule SESSION:IS_NEW "@eq 1" \
 "phase:1,nolog,pass,\
 setvar:SESSION.TIMEOUT=172800"

If your application uses URI-based session tokens, head to the section called “Capturing Data
” in Chapter 6, where I give a complete example showing how to use the data capture facility
to extract session tokens from URIs.

Blocking Sessions
After the SESSION collection is initialized, blocking a session is a matter of setting a flag (with
the correct expiry time) and checking for it on all requests. You have seen this technique earlier
in this chapter. I describe the flag method, as well as several variations and other blocking
methods in the section called “Advanced Blocking” in Chapter 9.

In addition to blocking sessions with ModSecurity rules, you should consider communicating
with the application so that it too blocks the session or signs the user out. Signing out the user
can be as simple as proxying the current request to the sign-out page:

SecAction "log,proxy:/sign-out.php,msg:'Logging out current user'"

An alternative to using the proxy action is to write a Lua script that can then communicate
with an external system to achieve a similar effect. Some information on this approach is
available in the section called “External Blocking” in Chapter 9.

If you couple the signing-out with a block on the user account (described later in this chapter),
the potentially rogue user may be banned from the application until an investigation can be
carried out.

Forcing Session Regeneration
Blocking sessions might work well for security, but isn’t very user-friendly. If you use session
blocking alone, you may leave your users confused, because they won’t be able to continue to
use the application and won’t know how to obtain a new session (close all browser windows
and start using the application again). The solution to that problem is to generate a new ses-
sion for the user. There are two ways to achieve session regeneration, and I will demonstrate
both here.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Restricting Session Lifetime 141

Both approaches use header manipulation, which means that you will need to use ModSe-
curity in tandem with mod_headers. (At this point, you should probably first go to read the
section called “Integration with Other Apache Modules ” in Chapter 9, where I explain how
to get ModSecurity to collaborate with other Apache modules.)

The following code contains two mod_headers rules, each activated by setting an environment
variable:

Neutralize the cookies containing disabled session IDs
RequestHeader edit Cookie "(?i)^(PHPSESSID)=(.+)$" "DISABLED_$1=$2" \
 env=DISABLE_INBOUND_SESSION

Instruct browser to delete session cookie
Header always set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
 env=DISABLE_OUTBOUND_SESSION

The first rule is activated by the DISABLE_INBOUND_SESSION environment variable, after which
it renames inbound session cookies. When a session cookie is renamed, it is no longer a session
cookie, but some cookie whose value will be ignored. As a result, the application will likely
generate a brand new session cookie.

The second rule is activated by the DISABLE_OUTBOUND_SESSION environment variable, and
sends a command to the user’s browser to delete the session cookie (by using the same name
as the session cookie, with an expiry time in the past).

To maximize both security and usability, use both mechanisms in your rules: delete the session
cookie of a session you are deciding to block (by executing setenv:DISABLE_OUTBOUND_SESSION
in any phase except phase 5), and suppress inbound session cookies of the sessions that have
previously been blocked (by executing setenv:DISABLE_INBOUND_SESSION in phase 1 or in
phase 2).

Restricting Session Lifetime
Because sessions in today’s web applications function as temporary passwords, it is important
to cancel them as soon as they are not needed. Two mechanisms are typically used to do that:

Inactivity timeout
When a session is not used for a period of time, it is reasonable to assume that it had
been abandoned. Allowing such sessions to remain only increases the danger of them
being reused by someone other than the original user.

Session duration timeout
You should also put an absolute limit on session duration. Very long session life span
is very unusual and may be an indication of automated activity, or of a bad guy trying
to extract as much information as possible from a hijacked session.

Here’s what we need to do to implement the two limits:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

142 Chapter 8: Persistent Storage

1. Record the last time a session is used. As you may recall from earlier sections, whenev-
er a collection record is persisted, its LAST_UPDATE_TIME variable is updated. We need
that value. So, in order to force session records to be persisted, we’ll use the same ap-
proach as the one used with the IP collection: increment an arbitrary variable on every
request.

2. Now that we have access to LAST_UPDATE_TIME, we can check it upon every request to
ensure that it hasn’t been too long since the previous request.

3. All collections have the CREATE_TIME variable, which we’ll use to enforce maximum
session duration.

We’ll use the following Lua rule (placed in the file check_session.lua) to check those two
conditions:

function main()
 -- Retrieve session key
 local key = m.getvar("SESSION.KEY");

 -- If there's no key there's no session,
 -- so return without a match.
 if (key == nil) then
 return nil;
 end

 -- Retrieve CREATE_TIME
 local createTime = m.getvar("SESSION.CREATE_TIME");

 -- If the session was created more than 8
 -- hours ago, trigger a match
 if (os.time() - createTime > 28800) then
 -- Match
 return "Session older than 8 hours: " .. key;
 end

 -- Retrieve LAST_UPDATE_TIME
 local lastUpdateTime = m.getvar("SESSION.LAST_UPDATE_TIME");

 -- Check for a period of inactivity
 if (os.time() - lastUpdateTime > 600) then
 -- Match
 return "Session inactive for more than 10 minutes ("
 .. (os.time() - lastUpdateTime) .. "s):" .. key;
 end

 -- No match
 return nil;
end

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Restricting Session Lifetime 143

Because this particular feature is more complex than your average rule, I am going to put
all the required rules together in a self-contained example, which combines everything we’ve
discussed about session initialization, collection timeouts, session inactivity detection (the
Lua rule), session blocking, and header manipulation:

Check that we have at most one session token
SecRule &REQUEST_COOKIES:PHPSESSID "@gt 1" \
 "phase:2,log,block,msg:'More than one session token'"

Catch invalid PHP session tokens
SecRule REQUEST_COOKIES:PHPSESSID !^[0-9a-z]{32}$ \
 "phase:2,log,block,msg:'Invalid session token'"

Initialize SESSION from PHP session token
SecRule REQUEST_COOKIES:PHPSESSID ^[0-9a-z]{32}$ \
 "phase:2,nolog,pass,\
 setsid:%{REQUEST_COOKIES.PHPSESSID}"

Set the default timeout value for new SESSION records
SecRule SESSION:IS_NEW "@eq 1" \
 "phase:1,nolog,pass,\
 setvar:SESSION.TIMEOUT=172800"

Check for expired session
SecRule SESSION:expired "@eq 1" \
 "phase:2,log,redirect:/session-timeout.html\
 setenv:DISABLE_INBOUND_SESSION,\
 setenv:DISABLE_OUTBOUND_SESSION"

Check session inactivity and duration
SecRuleScript check_session.lua \
 "phase:2,log,redirect:/session-timeout.html,\
 setvar:SESSION.expired\
 setenv:DISABLE_INBOUND_SESSION,\
 setenv:DISABLE_OUTBOUND_SESSION"

Increment the session counter
SecRule REQUEST_FILENAME "!\.(jpg|png|gif|js|css|ico)$" \
 phase:1,nolog,pass,setvar:SESSION.counter=+1

Neutralize the cookies containing disabled session IDs
RequestHeader edit Cookie "(?i)^(PHPSESSID)=(.+)$" "DISABLED_$1=$2" \
 env=DISABLE_INBOUND_SESSION

Instruct browser to delete the session cookie
Header always set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
 env=DISABLE_OUTBOUND_SESSION

Property of Girish Motwani <kushalbooks@yahoo.co.in>

144 Chapter 8: Persistent Storage

Detecting Session Hijacking
Session hijacking is a potentially devastating attack, often executed as the next step after a
successful XSS attack. Once the attacker obtains a session token, he or she can assume the
identity of the original user. Although it is not possible to detect and prevent session hijacking
100% reliably, there are a few defenses that can prove to be very effective. Before you resort to
stateful session monitoring as a measure against session hijacking, however, you should verify
that you have done everything you can to secure the session cookies—if you make them safe
from compromise, then session hijacking is not possible. I discuss the necessary session cookie
rewriting in the section called “Integration with Other Apache Modules ” in Chapter 9.

Our session hijacking detection measures are going to focus on two pieces of information:

Session IP address
Sessions are not attached to IP addresses. Anyone with knowledge of the session token
is allowed to participate in a session. Having said that, the IP address to which the
session was initially assigned (on the first request) will in many situations remain the
same throughout a session. For example, a user accessing an application from his or
her workstation attached to the internal network is not likely to change his or her IP
address. That’s probably the best-case scenario.

When it comes to Internet users and roaming users, the change of IP address is possible
and you can never be quite sure whether a hijacking is taking place. For example, AOL
is famous for having their proxies using a number of completely different addresses.
The rumor is that AOL users can have a different IP address on every subsequent re-
quest. Roaming users can start a session while they are in one place, put their laptop in
standby, and resume the session from a completely different place.

It should also be said that it is possible for the attacker and the victim to have the same
IP address as far as you are concerned. That could happen, for example, if they are
behind the same proxy or a network address translation (NAT) system.

Ultimately, the value of this detection mechanism will depend on your user base. My
advice is to try the mechanism out as a warning system initially, and see if it produces
false positives.

Session user-agent
Whereas it’s possible that the session IP address will change, it’s far less likely that
the user agent identification will. If you start a session in one browser, it’s very un-
likely that you will finish it in another—unless you hijack someone’s session, that
is. Research carried out by the Electronic Frontier Foundation [https://www.eff.org/
deeplinks/2010/01/tracking-by-user-agent] indicated that one in about 1500 users have
the same User-Agent request field. Checking that the user agent identification remains
the same across all session requests is thus a decent detection mechanism. It is also a

Property of Girish Motwani <kushalbooks@yahoo.co.in>

https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent
https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent
https://www.eff.org/deeplinks/2010/01/tracking-by-user-agent

User Management 145

mechanism that can be easily defeated by a determined attacker who knows that it ex-
ists and who can somehow uncover the victim’s own identification string (with a bit
of social engineering, for example).

Putting that lengthy discussion aside, here’s how to store the original IP address and User-
Agent values and check them on subsequent requests:

Generate a readable hash out of the User-Agent
request header and store it in TX.uahash
SecRule REQUEST_HEADERS:User-Agent ^(.+)$ \
 "phase:2,nolog,pass,t:none,t:sha1,t:hexEncode,capture,\
 setvar:TX.uahash=%{TX.0}"

Initialize SESSION, storing a hash of the User-Agent
value, as well as the originating IP address.
SecRule SESSION:IS_NEW "@eq 1" \
 "phase:2,nolog,pass,\
 skipAfter:999,\
 setvar:SESSION.uahash=%{TX.uahash},\
 setvar:SESSION.ip=%{REMOTE_ADDR}"

SecRule SESSION:ip "!@streq %{REMOTE_ADDR}" \
 "phase:2,pass,msg:'Possible session hijacking: Expected session address …
%{SESSION.ip} but got %{REMOTE_ADDR}'"

SecRule SESSION:uahash "!@streq %{TX.uahash}" \
 "phase:2,pass,msg:'Possible session hijacking: Expected session U-A hash …
%{SESSION.uahash} but got %{TX.uahash}'"

SecMarker 999

There’s nothing in these rules that you haven’t already seen—they are just a combination of
the techniques already covered in this chapter.

User Management
When it comes to persistent state, user management is the final piece of the puzzle. By follow-
ing individual users, you come as close as possible to using the same data model the applica-
tions do. I have already used the USER collection in this chapter to keep track of authentication
attempts. Now we’re going to see if it is possible to detect users as they sign in and out. (Of
course it is.) If we manage to detect those two events, we might be able to associate each ses-
sion with a user account and use that information to initialize the USER collection.

One thing to have in mind is that tracking users in ModSecurity is not going to be an exact
science. You have to work with the information you have available, which means that you are
going to have to rely on many assumptions—some of which may not be true. That’s going to
be just fine, as long as you use the user management facilities with that unreliability in mind.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

146 Chapter 8: Persistent Storage

Detecting User Sign-In
The work we’ll need to perform to detect a sign-in event is just the opposite of what we did
to detect brute force attacks against authentication. I will base the examples in this section
on the assumption that we’re dealing with an application whose sign-in form is located at /
login.php, and that the application redirects back to the home page (/index.php) when au-
thentication is successful. (If you recall, in the case of failed authentication the redirection was
back to the same /login.php page.)

The following example assumes that the SESSION collection was initialized by an earlier rule:

Initialize the USER collection based on
the user information we keep in the session store
SecRule SESSION:user !^$ \
 "phase:2,nolog,pass,\
 setuid:%{SESSION.user},\
 setvar:USER.TIMEOUT=2592000"

<Location /login.php>
 # Check for successful authentication
 SecRule REQUEST_METHOD "@streq POST" \
 "phase:5,chain,t:none,nolog,pass"
 SecRule RESPONSE_HEADERS:Location ^/index.php \
 setvar:SESSION.user=%{ARGS.username}
</Location>

The first of the two rules simply looks in the SESSION.user variable to see if we had previously
established who the user behind the session is. If the information is available, the rule uses it to
initialize the USER collection. The second rule detects the sign-in event, as previously discussed.

Warning
Look at the previous example carefully and try to answer what will happen if the
sign-in function receives two (different) username parameters. Do you think that it’s
possible that the application chooses one of those parameters, while the rules choose
the other? If that happens, the rules may end up associating the session with a wrong
user account. Best practice is to use a positive security model to verify every aspect
of the entire sign-in operation, as discussed in the section called “Virtual Patching”
in Chapter 9.

Detecting User Sign-Out
Detecting the sign-out function is much easier, as the action is rarely conditional. In the fol-
lowing example, I assume an application in which it is enough to visit the /signout.php page
in order to sign out of the application:

<Location /signout.php>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 147

 # Disassociate user from session
 SecAction phase:5,nolog,pass,setvar:!SESSION.user
</Location>

When we’re on the sign-out page, we need just to remove the user information from the
SESSION collection and we’re done.

Summary
Now that we’ve concluded the persistence chapter, I hope that you understand why I was so
excited about this aspect of ModSecurity. The persistent storage facility is the feature that
quite literally adds a complete new dimension to ModSecurity—that of time. With the ability
to track external parties over time and correlate events, you gain a far more useful tool in
ModSecurity.

In the next chapter, aptly named Practical Rule Writing, we tie together everything you’ve
learned so far by discussing a number of practical issues that you will encounter in your every-
day life with ModSecurity.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

148

Property of Girish Motwani <kushalbooks@yahoo.co.in>

149

9 Practical Rule Writing
This chapter is dedicated to the many practical aspects and requirements of rule writing. We go
beyond looking at features in isolation to discuss what we can achieve when multiple features
are used together. This is the chapter where, finally, everything comes together.

Whitelisting
Rule sets are usually written to single out unusual requests, but it turns out that most networks
contain one or more sources of requests that are not only unusual but also desired. The more
complex the network, the more likely it is that you’ll need to use whitelisting. In most cases,
there will be at least one crude monitoring script that is practically indistinguishable from
some other Perl script that will be attacking it. In others, you might have outsourced security
testing to a third party, and you don’t want your rules to interfere with their work. Finally,
even if you don’t have any of that, you won’t be able to avoid the unexpected—Apache sending
requests to itself.

Whitelisting Theory
You have to be very careful when writing whitelisting rules, because each such addition to
your rule set creates a bond of trust. If you make a mistake, you can end up with a hole in your
rule set that can be used by your adversaries. You should be asking yourself three questions:

How do I know the request is from the person or device I want to whitelist?
In the ideal case, the remote client will authenticate itself in some way, ideally with a
password (embedded, for example, in the User-Agent request header). The drawback
of this approach is that you will probably have to make some configuration changes
on the remote end to support authentication, and sometimes that might not even be
possible. As an alternative to authentication, you can choose to look at the IP address or
range from which the request is coming. If you do, take a moment to consider whether
it is possible (and likely) that something else could send you (potentially malicious)
requests from the same IP address range.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

150 Chapter 9: Practical Rule Writing

Is there anything specific about the requests I want to whitelist?
You may have established that the requests are coming from a source you can reasonably
trust, but it’s still a good idea to narrow down the attack vector as much as possible.
Observe, over time, the requests you want to whitelist: is there a recurring pattern? For
example, most monitoring requests are identical. In other cases, the requests will be
restricted to a part of your web site and will have predictable parameters.

What changes do I want to make to the default configuration?
This last question pertains to the action you wish to take after you definitely decide
that you want to go through with whitelisting. The easiest thing to do is to simply use
the allow action to let the remote party continue unconditionally, but are you really
comfortable with giving them unrestricted access? A better solution might to be to
switch the rule engine to detection mode. You will not regret this, as long as you get
false positives only occasionally.

In the next section, I will discuss the placement of whitelisting rules, followed by several simple
examples and finishing with the rule that you will need to silence the Apache web server itself.

Whitelisting Mechanics
Whitelisting rules need to be executed before all your other detection rules, which means that
they should always follow your configuration and system rules. It is a good idea to have a
special file for this category of rule alone. That will make them easy to find, after a simple
glance at the list of your configuration files.

Most whitelisting rules look at the remote address first, so let’s do just that. Let’s assume that
there is a trusted employee to whom you want to give unrestricted access to your web site. The
IP address of his workstation is 192.168.1.1. The whitelisting rule is as follows:

SecRule REMOTE_ADDR "@streq 192.168.1.1" \
 phase:1,t:none,nolog,allow

Because you need to work with only one IP address, use the @streq operator. Upon detecting
a request from the employee’s IP address, the allow action will interrupt the operation of the
rule engine, skipping all phases except phase 5.

Until version 2.6.0, ModSecurity did not have an operator designed to work with IP addresses,
so you needed to be creative if you are given several IP addresses to whitelist. Suppose that you
are given three IP addresses. You could write three separate rules, which is not only inelegant,
but inefficient as well. In most such cases, the @rx operator will do the job. For example:

SecRule REMOTE_ADDR "@rx ^192\.168\.1\.(1|5|10)$" \
 phase:1,t:none,nolog,allow

The previous example whitelists three IP addresses: 192.168.1.1, 192.168.1.5, and
192.168.1.10.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Granular Whitelisting 151

As of ModSecurity version 2.6.0, you can use the @ipMatch operator, which accepts a list of IP
addresses or network segments to match against. The previous example can be rewritten as:

SecRule REMOTE_ADDR "@ipMatch 192.168.1.1,192.168.1.5,192.168.1.10" \
 phase:1,t:none,nolog,allow

That’s not much of an improvement, but it gets better once you get into working with network
segments. For example, the following is easy to understand:

SecRule REMOTE_ADDR "@ipMatch 192.168.0.0/22" \
 phase:1,t:none,nolog,allow

As previously discussed, you should generally avoid using the allow action; instead, switch
the rule engine to detection-only mode:

SecRule REMOTE_ADDR "@streq 192.168.1.1" \
 phase:1,t:none,nolog,pass,ctl:ruleEngine=DetectionOnly

In this rule, I replaced allow with pass (which won’t do anything else but move to the next rule
once the current rule is done), and added an invocation of the ctl action with the instruction
to change the operating mode of the rule engine.

Granular Whitelisting
Although every invocation of the allow action interrupts the phase in which it runs, you are
able to choose whether and how other phases in the same transaction are affected. The allow
action has an optional parameter, and the following rules apply:

Interrupt current phase and skip all other inspection phases
If you invoke allow without a parameter then, regardless of the current phase, all in-
spection phases will be skipped.

Interrupt current phase only
When allow is invoked with phase as a parameter (allow:phase), it restricts the effect
of this action to the current phase.

Interrupt current phase and any remaining request phase
When allow is invoked in phase 1with request as a parameter (allow:request), the
processing of phase 1 will be interrupted and phase 2 will be skipped completely. The
processing will continue with the first response phase (phase 3).

Complete Whitelisting Example
Earlier in this section, I mentioned how Apache talks to itself. Because it’s a case that every
ModSecurity administrator will have to deal with, I will use that example to demonstrate how
to implement whitelisting.

First, let’s look at the complete request we need to ignore:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

152 Chapter 9: Practical Rule Writing

::1 - - [26/Oct/2009:16:01:06 +0000] "OPTIONS * HTTP/1.0" 200 - …
"-" "Apache (internal dummy connection)"

Note
If you are using an older version of Apache, you may see variations of this request.
Initially, the wake-up request used just GET /, but it was improved over the years,
because very few system administrators knew what that meant. On a similar note, if
your Apache ever gets a HTTP client that speaks plain-text on an SSL-enabled port,
Apache will log such a request as GET / in the access log.

What can we deduce from the example log line?

1. The first thing that you will notice about this request is that it always arrives from the
server itself. In the example, the remote address is ::1 (IPv6 localhost). In other cases,
you will see 127.0.0.1 there. We can use this information to restrict the source of re-
quests that our rule will take into account.

2. The request is always the same and involves the OPTIONS request method. This is even
more helpful, because it allows us to write a rule that only matches that specific usage.

3. The user agent identification is the same for all requests.

Using the obtained information, we write a robust and reasonably safe rule:

SecRule REQUEST_LINE "@streq OPTIONS * HTTP/1.0" \
 "phase:1,chain,t:none,nolog,allow,\
 msg:'Allowing wake-up request from Apache itself'"
SecRule REMOTE_ADDR "^(::1|127\.0\.0\.1)$" t:none

I used only the first two facts for my rule, because I felt that they allow me to uniquely identify
a request and that no more narrowing is needed. Besides, the User-Agent request header is
trivial to subvert.

Can the example rule be improved? It sure can:

1. We restrict the remote address and the request line, but there’s no mention of request
headers. In theory, someone could place an exploit payload into one of the request
headers, and send it using the OPTIONS request method. As an exercise, record one
Apache request to the audit log, examine the request headers it sends, and modify the
example rule to nail every header down.

2. The really paranoid could look in the Apache source code to change the default user
agent identification and thus allow for reliable identification of Apache access.

Virtual Patching
In the ideal world, when you identify a flaw in an application, you get the developers to fix the
problem. You then get the developers to examine the entire code base for similar problems,

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Virtual Patching 153

fixing other flaws that they discover. In the real world, however, there are many obstacles to
fixing the problems in this way:

No access to source code
When you are running third-party applications or using third-party libraries, you don’t
have a choice. You are at the mercy of the vendors to deal with the issues. Many vendors
won’t have the same sense of urgency; in some cases, months and even years may pass
before an issue is fixed.

No legal right to change source code
When you outsource your development, you may have access to the source code, but
you may not be able to do anything with it until the contract with the developer expires.
At best, you can identify the location of the problem and assist the developer.

Changing source code prohibitively expensive
Let’s say that there are no legal issues in fixing the problem in an application for which
you have the source code. If you are currently using the stock version (e.g., the one
that comes with the operating system), to fix a flaw requires an additional packaging
and distribution of the new package. You would also need to continue to produce new
application versions until the original flaw is fixed upstream.

Lack of expertise to fix flaw
All the source code in the world won’t mean a thing if you lack the expertise needed to
devise a fix. Employing a random developer is not going to cut it; you have to have access
to a senior developer with security expertise who already understands the application.
If you don’t, you risk the danger of making a bigger problem. Lack of expertise can
especially be a problem when the flaw is in a legacy application that has been long
forgotten. How on earth are you going to find someone to not only fix the problem
but also build a complete development, staging, and deployment environment from
scratch?

In the best-case scenario for fixing problems in the source code, the flaw will be in a critical
internal application developed by an agile experienced team with security expertise. But even
in that case, there may be issues with the timings and the cost:

• Should you disrupt a development cycle halfway?

• How will that affect the quality of the release?

• Will subsequent releases (and features) be affected?

• How will the changes have an impact on the business?

• Are you able to roll out an update to the application?

• Is the production version a freeze during the critical time of the year?

• Is the key developer out sick or away on a vacation?

Property of Girish Motwani <kushalbooks@yahoo.co.in>

154 Chapter 9: Practical Rule Writing

• Do you dare make changes without him or her?

• Are there any bigger fires to deal with?

Virtual patching presents a way to deal with a known problem in a web application—almost
any application—without actually touching the application itself. Because most web applica-
tion traffic uses standard data transport protocols, it is relatively easy to reroute information
flow and install a policy capable of preventing the exploitation. This technique is also some-
times referred to as just-in-time patching, or dynamic patching.

The principal advantage of virtual patching is that it is very effective and quick to deploy. As-
suming you’ve laid the foundation for virtual patching in advance, it can take literally minutes
to mitigate a problem. Compare that to the days, weeks, and months that it might take to fix
the same problem in the source code. In addition, if you neutralize a problem in this way, you
relieve the pressure on your developers, giving them enough time to fix the problem properly
and roll out the fix in the next scheduled software update.

Some application security practitioners are concerned that the use of virtual patching, as ef-
fective as it can be, contributes to the culture of not caring about security flaws and leaving
them to linger in the source code. That’s a legitimate concern, but ultimately, the culture in
an organization is going to be exactly what the people in charge want it to be. The truth is
that virtual patching is an operational tool, which shouldn’t affect how problems are treated
on the development level.

Vulnerability versus Exploit Patching
There are two ways in which virtual patches can be written: vulnerability-oriented and ex-
ploit-oriented. Vulnerability-oriented virtual patches are designed to address the core issue;
you work to understand the problem and write a policy that essentially does the work that
the vulnerable application should have done—typically, adding the required input validation.
This approach is also known as positive security model or whitelisting. You make no attempts
to determine whether something is unsafe. Instead, you just figure out what is safe (which is
much easier), and you then write the policy to implement just that.

Exploit-oriented patches focus on the known exploits instead. No attempts are made to un-
derstand the root cause; the focus is on trying to catch the attacks instead. This approach is
also known as the negative security model, or blacklisting. Exploit-oriented patches are not as
effective as vulnerability-oriented patches, because they will fail if someone is able to rework
an existing exploit to be different yet remain effective. Similarly, such defense measures will
fail if someone discovers another way to exploit the underlying problem.

I prefer to use the term “virtual patching” only for the policies that employ the whitelisting
approach.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Failings of Exploit Detection 155

Failings of Exploit Detection
Let’s assume that we are dealing with a web application that is vulnerable to SQL injection.
We’ll say that the vulnerable page has a parameter called articleid, which is supposed to be
just an integer, but that no checks are made on what the supplied value actually contains.
Normally, you’d use the page with an URL such as this one:

http://www.example.com/showArticle.jsp?articleid=4545789

However, there’s nothing preventing you from adding a bit of SQL to the parameter, and
getting it to execute in the site’s database:

http://www.example.com/showArticle.jsp?articleid=4545789;drop%20table%20articles

If you were to circulate this “exploit,” someone might write a rule that focuses on detecting
the SQL keywords used in it:

SecRule ARGS:articleid "(drop|table)" \
 phase:2,log,block,t:none,t:lowercase,t:compressWhitespace

This rule is not the worst written, but it creates an imperfect net that catches some attacks,
but not necessarily all of them. Someone with enough time on his or her hands could perform
many tests and work methodically to reverse-engineer your rule just by sending varying re-
quests. In the end, what he or she will do is find a way to bypass the rule.

If you want to be safe, write positive security patches, allowing only what you know to be safe.
So let’s try to do that:

SecRule ARGS:articleid "^[0-9]{1,10}$"

This rule, being vulnerability-based, is a great improvement over the previous attempts. The
key difference is that now the attacker can try to use every SQL injection technique available,
but they will fail unless he or she can make the exploit payload be an integer. The attacker
won’t be able to do that, and you’ll be safe. Or will you?

Impedance Mismatch
When you use the whitelisting approach to virtual patch creation, the attacker should no
longer be able to successfully attack the application. What he or she can do, however, is attack
the web application firewall, or, in our case, ModSecurity. If you look at the previous rule
very carefully, you may realize that it depends entirely on the ability to correctly inspect the
articleid parameter.

A common attack technique is to use multiple parameters with the same name, with some
using a correct value and some containing exploit payloads, and hoping that the inspec-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

156 Chapter 9: Practical Rule Writing

tion device will allow the request after seeing one of the correct values. This technique does
not work against ModSecurity, because when you use the named parameter syntax (e.g.,
ARGS:articleid), it inspects all parameters with that name.

But what if the attacker changes the name of the parameter in some way to make ModSecurity
see it as a different name, while the target application sees it as the original name? Strictly
speaking, that shouldn’t be possible. After all, we have standards that define how parameter
names are specified. In reality, however, it’s quite easy with some application servers, because
they will handle input in nonstandard ways.

PHP, for example, is quite liberal as to how it handles parameter names. It’s trying to be help-
ful, actually, correcting the things it thinks are wrong, but is ultimately causing problems,
from the security perspective. One thing it will do is ignore the whitespace at the beginning
of parameter names. Take the following request, for example:

http://www.example.com/showArticle.jsp?%20articleid=4545789;drop%20table%20articles

You might be surprised to learn that the application would process the request as if you used
the parameter articleid without the space as the first character. Meanwhile, ModSecurity
will see the parameter for what it is, as articleid (with the space), causing the virtual patch
to fail. Back to the drawing board.

Using the negative security mentality, you might want to detect the parameters that have
spaces in them:

SecRule ARGS_NAMES "\s+" \
 "phase:2,log,block,msg:'Whitespace in parameter name'"

You don’t want to only look for the whitespace at the beginning of parameter names, because
PHP will also convert whitespace inside parameter names, replacing it with underscores. Any-
way, the approach in the previous rule would probably be good enough, assuming you are not
running any applications that actually have whitespace in the parameter names. However, you
shouldn’t rely on that approach, because you don’t really know all the weird ways in which
PHP will change parameter names. A positive-security approach would be to define what you
consider to be normal. Like the following rule, for example, which allows only the characters
you would normally expect in a parameter name:

SecRule ARGS_NAMES "!^[-0-9a-zA-Z_.]+$" \
 "phase:2,log,block,msg:'Invalid parameter name'"

That’s an improvement, because now, if we accept a parameter name, we’ll know exactly what
it can be.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Preferred Virtual Patching Approach 157

Preferred Virtual Patching Approach
The preferred virtual patching approach is actually to cast a wider net, and lock down the
entire script that exhibits the vulnerability you are patching. With the previously described
vulnerability in mind, consider the following group of rules:

<Location /index.php>
 SecDefaultAction phase:2,t:none,log,deny

 # Validate parameter names
 SecRule ARGS_NAMES "!^(articleid)$" \
 "msg:'Unknown parameter name: %{MATCHED_VAR_NAME}'"

 # Validate each parameter's cardinality
 SecRule &ARGS:articleid "!@eq 1" \
 "msg:'Invalid parameter: articleid'"

 # Validate parameter 'articleid'
 SecRule ARGS:articleid "!^[0-9]{1,10}$" \
 "msg:'Invalid parameter: articleid'"
</Location>

The preferred virtual patching approach is to use the following methodology:

1. Use the <Location> or <Directory> (preferred, but only works in embedded mode)
configuration containers to focus on only a single script or page

2. Allow only known parameter names

3. Check that each parameter appears only once, or as many times as needed

4. Check that the value provided in each parameter matches what is desired

Although my example demonstrates the concept on a script with only one parameter, the
same approach can be used with any number of parameters.

IP Address Reputation and Blacklisting
There are only two things that are guaranteed for every HTTP request you get: you will have
an IP address and port to work with. Even when everything else is wrong or broken, the two
pieces of information can be retrieved from the TCP network level. At first you might think
that an IP address is not worth much, but it is surprising how much you can actually do with it:

• Using geolocation, you can determine a client’s geographic location.

• You can ban an IP address from your site forever.

• You can keep long-term information on an IP address in a local database and use it to
influence your policies.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

158 Chapter 9: Practical Rule Writing

• You can ask a remote fraud detection service whether it believes the IP address is
“bad.”

IP Address Blocking
Conceptually, blacklisting is done in the same way as whitelisting, which I’ve covered earlier in
this chapter. You keep a list of IP addresses you don’t want to do business with, and you refuse
the requests that arrive from them. There’s often a difference in the number of IP addresses
that are used. Blacklists often contain hundreds and even thousands of IP addresses, which
means that you need to work harder to maintain good inspection performance.

Parallel matching offers best matching performance, but because it wasn’t designed for the
matching of IP addresses, you’ll need to do some extra work to implement it correctly. The
problem is that the @pm operator does not understand pattern boundaries. If you ask it to
match “192.168.1.1”, it will match it no matter where in the string pattern it sits, which means
that it will match “192.168.1.10” and “192.168.1.100”, to list just a couple of the possible false
positives.

The extra work I mentioned is needed to create artificial boundaries where they are needed.
First, you need to create a new variable to keep the remote IP address, adding something in
front of the IP address and something at the end. I’ll use a forward slash character:

SecAction phase:1,nolog,pass,\
 setvar:TX.REMOTE_ADDR=/%{REMOTE_ADDR}/

The actual blacklisting is just a normal use of the @pmFromFile operator, but you use
TX:REMOTE_ADDR instead of REMOTE_ADDR:

SecRule TX:REMOTE_ADDR "@pmFromFile blacklist.dat" \
 "phase:1,log,block,msg:'IP address on blacklist'"

The file blacklist.dat contains one IP address per line, with a forward slash character at the
beginning and end of every line:

/192.168.1.1/
/192.168.1.2/
/192.168.1.3/

Warning
Older versions of ModSecurity supported only LF line endings in the parallel match-
ing pattern file. A CR character before LF would be considered to be part of the pat-
tern, not part of the line terminator. If you edited your files on Windows, for exam-
ple, and used them on Unix, the patterns would mysteriously fail. In addition, any
whitespace at the beginning of each line and at the end, would become part of the
pattern. Starting with ModSecurity 2.5.12, the CRLF line endings are processed cor-
rectly and whitespace trimmed.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Geolocation 159

Because we have the forward slash characters in both places (in the rule and in the file), the
matching will work as it should, without the previously described false positives. As a matter of
fact, now you can take advantage of the side effect, making the blacklisting of entire segments
easier. For example, if you want to match an entire class C address space (256 IP addresses),
you could have the following line in the file:

/192.168.1.

Note
In ModSecurity 2.6.0, you can use the ipMatch operator to match IP addresses and
ranges, but—although convenient—this operator is not faster than the @pm operator
when working with large numbers of IP addresses.

Geolocation
Geolocation is the identification of the geographic location of a HTTP client by means of an
IP address. The identification is done by performing a lookup against a database that “knows”
where every IP address belongs. The process is not 100% accurate and may not work at all
for some addresses.

ModSecurity supports geolocation through the integration with the free Geo-
Lite Country [http://www.maxmind.com/app/geolitecountry] or GeoLite City [http://
www.maxmind.com/app/geolitecity] databases. To start using this feature, first download the
database and put it somewhere on the local filesystem where ModSecurity can get to it.

To obtain the geographic location of someone whose IP address you have, you’ll need one
configuration directive and one rule:

Initialize GeoIP database
SecGeoLookupDb /path/to/GeoIP.dat

Perform geolocation
SecRule REMOTE_ADDR "@geoLookup" "phase:1,t:none,nolog,pass"

You can afford to perform a lookup on every request because the database is available locally.
It is unlikely that the performance is going to be an issue.

From this point on, you can use the geographic information in your rules. For example, to
detect access from Great Britain, write this:

Detect access from Great Britain
SecRule GEO:COUNTRY_CODE3 "@eq GBR" \
 phase:1,log,pass,msg:'Access from Great Britain'

Of course, this example is silly, because it was designed only to show how the geolocation
features are used. In practice, you will want to add the geographic information to the list of
variables that influence your rules and your policies. Let me give you a couple of ideas:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.maxmind.com/app/geolitecountry
http://www.maxmind.com/app/geolitecountry
http://www.maxmind.com/app/geolitecountry
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity

160 Chapter 9: Practical Rule Writing

Assign a risk score to each country
Then, when deciding whether a request is an attack, or whether to block, use the risk
score to sway your decision one way or another.

Know where your users are
Keep track of where your users are. If a user session changes country, or if a user “trav-
els” a great distance in a short period of time, that may be an indication that his or her
account was compromised.

Implement defense conditions
The majority of your users may be in one or a few countries, but you normally don’t
want to restrict access because some users are often travelling. However, in extraordi-
nary circumstances (e.g., when you’re under attack), you may want to lock down your
systems and allow access only from a small number of countries.

Real-Time Block Lists
A real-time block list (RBL) is an IP address reputation tool that is able to tell you whether
an IP address or domain name is bad. Real-time block lists are most commonly used to fight
email spam, but they can be quite useful for web applications. After all, if you know that there’s
a spammer behind an IP address, do you really want him or her in your application? In recent
years, we have seen the rise of RBLs that are designed to work with application security in
mind.

Unlike geolocation, real-time block lists are usually accessed over the network. The upside
is that there’s usually zero maintenance. The downside is that there can be a significant per-
formance hit, depending on where the servers that power the RBL are located (relative to
your own servers). When I recently experimented with a RBL, I discovered that I had intro-
duced additional latency of about 400 ms. Because RBL lookups are performed over the DNS
infrastructure, there’s limited caching support, which means that not all requests will take
the latency hit. If you are planning on using RBLs in production, best practice is to install
a local caching DNS server (rbldnsd [http://www.corpit.ru/mjt/rbldnsd.html], for example).
Because some lists are available for download, with a local DNS server you solve the latency
problem.

In ModSecurity, a lookup of an address against a RBL is done using the @rbl operator:

Only allow the IP addresses cleared by sc.surbl.org
SecRule REMOTE_ADDR "@rbl sc.surbl.org" \
 "phase:1,log,block,msg:'IP address denied by sc.surbl.org'"

If you get a match, it means that the IP address is listed in the real-time block list. You don’t
have to block immediately, but if you don’t, store the information in a TX variable so that you
can refer to it later. I have found the following RBLs to be widely used:

• The Spamhaus Project [http://www.spamhaus.org/]

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.corpit.ru/mjt/rbldnsd.html
http://www.corpit.ru/mjt/rbldnsd.html
http://www.spamhaus.org/
http://www.spamhaus.org/

Local Reputation Management 161

• SURBL [http://www.surbl.org]

Local Reputation Management
Every time you create a whitelist or a blacklist, you practice local reputation management.
Similarly, the various persistent storage techniques that are used to track IP addresses and
application sessions are part of the same concept:

Static network access control
Keep track of the IP addresses that require special treatment, be it whitelisting or black-
listing. If the number of addresses is small, any approach will do. If you are dealing with
a large number of IP addresses, use parallel matching for performance. The disadvan-
tage of the static approach is that every change to the list requires a restart of Apache
(even when the IP addresses are kept in an external file and used with @pmFromFile).

Local (internal) geographic and organizational information
For the sites whose users are strongly clustered (e.g., internal applications used by dif-
ferent departments and company groups), consider creating a local database for geo-
graphic and organization lookups. Again, you can write the rules in any way, but use
parallel matching if there are too many IP addresses on the list.

Dynamic network, session, and user access control
Write rules to keep track of the behavior of the individual system elements (IP address-
es, sessions, users, and so on, as discussed in Chapter 8, Persistent Storage), denying
access to those elements that cross thresholds. The rules from this category should ide-
ally require little or no maintenance and use only temporary bans that do not require
manual interventions. For example, if you keep an anomaly score per IP address, you
want to ensure the score will go up as well as down as appropriate.

Integration with Other Apache Modules
One of the biggest advantages of Apache is its modular nature. When you put modularity
and popularity together, it sometimes seems that whatever need you can think of, there’s
already a module to fulfill it. In most cases, modules are used on their own, but multiple
modules can sometimes communicate one with another. ModSecurity generally tries to avoid
reimplementing the features available in other modules, even for the functionality that could
come under the security label. Thus there will be times when you will need to send or receive
instructions to and from other modules.

There are two mechanisms in Apache that allow for the communication among modules:

Environment variables
Inter-module communication using environment variables is a common approach to
having modules exchange information and influence one another. Whenever two mod-
ules need to communicate, the receiving module will be configured to watch for the

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.surbl.org
http://www.surbl.org

162 Chapter 9: Practical Rule Writing

presence (and possibly the value) of a particular environment variable, and act on it.
Many modules are built with environment variables in mind, so whenever you discov-
er that a particular module supports them, you can use them to talk to the module
from ModSecurity using the setenv action. Because in ModSecurity you can use the
ENV collection to retrieve the value of a named variable, you can write rules that use the
information prepared by other modules.

Optional functions
Optional functions make possible for a module to export one or more named functions
for other modules to consume. This mechanism is intended for module developers to
use—chances are you won’t be using it very often. ModSecurity builds its extension
APIs on top of optional functions. The extension APIs are described in Chapter 14,
Extending Rule Language.

The modules you may find yourself integrating with are:

• mod_deflate

• mod_headers

• mod_log_config

• mod_proxy

• mod_rewrite

• mod_setenvif

You should be aware that it may not be possible to get any two modules to communicate
successfully. If you want to send information from ModSecurity to another module, you must
verify that ModSecurity runs first. If you want to consume information in ModSecurity, you
need to verify that the other module runs first. In some cases, the order of execution is obvious.
For example, if you do something in a request phase in ModSecurity, you will always be able
to consume it in the response phase in mod_headers, and vice versa.

It gets tricky when both modules operates on the request or both modules operate on the
response. Apache has many extension points, but modules don’t document which ones they
use. Experimentation is one way to determine whether something is possible; another way is
to get your hands dirty, read the source code, and even sometimes change the order in which
things happen.

Prior to version 2.6, ModSecurity ran phase 1 as early as possible and phase 2 as late as possible
without allowing request processing to commence. Although the idea was to enable ModSe-
curity to protect Apache itself, the drawbacks caused more problems than the approach solved
(for more information, refer to the section called “Location-Specific Configuration Restric-
tions”). Starting with ModSecurity version 2.6, both phase 1 and phase 2 use the same Apache
hook. A consequence of the change is that you are probably no longer able to communicate
with any other request module if you are using ModSecurity 2.6 or later.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Conditional Logging 163

Conditional Logging
Normally, an access log will record every transaction processed by Apache, but sometimes
you will want to record only some transactions. That is called conditional logging. Apache’s
logging facilities support it, enabling use of environment variables to decide what to log.

• Log by default, but do not log if an environment variable is set

• Do not log by default, but log if an environment variable is set

In the following example, I create a custom access log that logs only the transactions from a
specific IP address:

Detect the condition that require logging
SecRule REMOTE_ADDR "@streq 192.168.1.1" \
 phase:1,nolog,pass,setenv:SPECIAL_ACCESS_LOG

Create a special access log file, which reacts to
the SPECIAL_ACCESS_LOG environment variable.
CustomLog logs/special_access.log combined env=SPECIAL_ACCESS_LOG

Note
With ModSecurity 2.5.x, it is not possible to control logging from a phase 5 rule,
because this phase executes only after Apache has completed writing to its log files.

Header Manipulation
In Apache, the mod_headers module is used for header manipulation. Its Header and Request-
Header directives know how to look up an environment variable, as I described in the previous
section, which means that you can use them to conditionally change request and response
headers. As before, the idea is to check for a condition using ModSecurity and set an environ-
ment variable if the condition is met.

In the following example, I use ModSecurity to instruct mod_headers to delete the session
cookie:

Simulate a condition that would want us
to force the user to use another session
SecRule ARGS attackPattern \
 "phase:2,t:none,log,pass,setenv:DISABLE_OUTBOUND_SESSION"

Expire session cookies when instructed
Header set Set-Cookie "PHPSESSID=;expires=Fri, 31-Dec-1999 00:00:00 GMT" \
 env=DISABLE_OUTBOUND_SESSION

Property of Girish Motwani <kushalbooks@yahoo.co.in>

164 Chapter 9: Practical Rule Writing

Securing Session Cookies
In web applications that support user authentication, session cookies function as temporary
passwords. Users provide their credentials only once and, assuming they are correct, their
sessions are marked as authenticated. From that point on, whoever knows a session’s ID can
exercise full control over it. Great care needs to be taken when constructing session cookies
to ensure that they are secure. In many applications, the security of session cookies can be
improved by changing two aspects of how they are constructed:

Use of the httpOnly flag
The httpOnly flag is an Internet Explorer innovation that aims to prevent access to
session cookies from JavaScript (which is the most common way to steal a session ID
after a successful XSS attack). The idea is that session cookies are needed only by the
server-side code, and that we lose nothing by forbidding access from JavaScript. With
the httpOnly flag in place, session hijacking becomes significantly more difficult.

Use of the secure flag
When a site uses SSL, there is no way for an attacker to gain access to the data that is
being exchanged between the site and the users. A frequent omission, when using SSL,
is to omit marking the session cookies as secure. The omission can lead to a compro-
mise of users’ session cookies, giving the attacker complete access to the corresponding
sessions.

If you are using Apache 2.2.4 or better, you can fix these problems quickly, using just two
mod_headers instructions. The following example improves the security of the session cookies
used by PHP:

Add missing httpOnly flag
Header edit Set-Cookie "(?i)^(PHPSESSID=(?:(?!httponly).)+)$" "$1; httpOnly"

Add missing secure flag
Header edit Set-Cookie "(?i)^(PHPSESSID=(?:(?!secure).)+)$" "$1; secure"

The general idea is that we look at the Set-Cookie header, which is used to create new cookies,
and look for the session cookies that do not have the desired flags set. If such incorrectly
set cookies are found, we modify the headers to append the missing flags. The example uses
several rarely used, but very useful features:

• The regular expression patterns both begin with (?i), which ensures that matching is
case-insensitive.

• In the second part, there is a negative lookahead assertion, causing the entire pattern to
match only if the bits in the assertion do not appear anywhere in the header.

• The fourth parameter, which contains the value that will replace an existing Set-Cookie
value, makes use of backreferences ($1), which are replaced by the existing header val-
ue.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Advanced Blocking 165

It’s interesting how much information can be contained on a single line of text, isn’t it?

Advanced Blocking
Chapter 8, Persistent Storage, already introduced many advanced blocking techniques, but that
was only half of the story. This section is the second half, discussing a few practical details, as
well as introducing the concept that blocking does not need to be a purely black and white
affair. In fact, as you will soon see, the wealth of facilities provided in ModSecurity allows you
to do what you want, when you want, and how you want.

Immediate Blocking
When we talk about blocking, we tend to have in mind the straightforward approach, in which
you detect a problem and block immediately:

SecRule ARGS attack \
 "phase:2,log,deny,status:403,msg:'Attack detected'"

When you use the deny action, which is the primary blocking mechanism, ModSecurity will
instruct Apache to cut short transaction processing and respond with a HTTP status code of
your choice. By default, the status code 403 (Forbidden) is used, but you can specify any other
status code using the status action. Responding with the 403 status code is probably the best
choice if you don’t have a desire to hide your actions from a potential attacker.

Having said that, there’s a case to be made for laying low and keeping the attacker guessing.
I often use the 500 status code (Internal Server Error), because that’s how a malfunctioning
site would respond. On the other hand, if you have a false positive with a 500, you create an
impression to your user base that your web site is crashing.

To some errors you can respond with a meaningful status code, such as 405 (Method Not
Allowed) and 501 (Not Implemented). Responding with an inappropriate status code (e.g.,
blocking with 504 or 501) is not recommended, because it may confuse many HTTP clients,
and also makes it easy for others to fingerprint your rules.

Not all phases are created equal when it comes to blocking. You are able to reliably block
from some, but not from others. The full details are presented in Table 9.1, “Phase blocking
suitability”.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

166 Chapter 9: Practical Rule Writing

Table 9.1. Phase blocking suitability

Phase Blocking notes

REQUEST_HEADERS (1) Request and response always possible.

REQUEST_BODY (2) Request and response always possible.

RESPONSE_HEADERS (3) Response blocking always possible. Request already processed.

RESPONSE_BODY (4) Response blocking possible, but only when response buffering is enabled. Re-
quest already processed. Response headers might have been sent. Conflicts with
mod_deflate are possible (blank output with status 200, or duplicated response
headers).

LOGGING (5) Never possible. Request already processed. Response already sent.

Keeping Detection and Blocking Separate
Although ModSecurity rules have the ability to be very specific about blocking, specifying
whether to block and how to block, I take a view that those decisions are none of the rules’
business. The rules should focus on detecting issues and raising flags, and generally leave it to
the system administrator to decide what to do. There’s a facility in ModSecurity that enables
the rule writers to do just that—the block action.

When a rule uses the block action, it essentially gives the system a hint that it believes blocking
should take place. The administrator is free to specify what really happens. In the following
example, the rules rely on the blocking policy specified at the beginning of the block:

Define how blocking takes place
SecDefaultAction phase:2,log,deny,status:403

Detect attacks
SecRule ARGS attack1 phase:2,block
SecRule ARGS attack2 phase:2,block

The advantage of this approach is that there is now only one location where you change the
blocking policy. You don’t have to make extensive changes in the rules. More importantly, the
blocking policy defined in this way will work with third-party rule sets (but only assuming
they were correctly implemented, avoiding the use of any specific blocking instructions):

Define how blocking takes place
SecDefaultAction log,deny,status:403

Include Acme Rule Set
Include conf/acme/*.conf

It is even possible to avoid blocking, if the default action list uses pass:

No blocking by default
SecDefaultAction phase:2,log,pass

Property of Girish Motwani <kushalbooks@yahoo.co.in>

User-Friendly Blocking 167

User-Friendly Blocking
Whenever you use blocking, you need to be aware that you’ll probably catch a few innocent
users over time. The security of your system may be your primary concern (otherwise, you
wouldn’t be blocking, right?), but the innocent users that get caught as collateral damage
won’t be very happy. In fact, the experience is likely to frustrate them and lose you money.

To lessen the users’ frustration, you need to set up a user-friendly response page where you
explain to the users why they were blocked. Depending on the nature of the block, you may
even be able to give them some practical advice (e.g., “try again in a few minutes”).

Simple blocking response page can be set up if you use a redirection for blocking:

Respond to attacks with a user-friendly response
SecRule ARGS attack \
 phase:2,redirect:/security-error.html

A disadvantage of this approach is that the action of redirection makes users move away from
the original transaction that may have caused a problem. If they contact support, you’ll only
have their account name to work with, but not much else. Apache has a built-in response
redirection mechanism whereby the information about the original requests is preserved. It
also works on a per-response code basis.

In your rules, you need to ensure only that you use the correct status code. The magic is in
the additional ErrorDocument directive:

SecRule ARGS attack \
 phase:2,deny,status:509

ErrorDocument 509 /security-error.php

The redirection will still take place, but it will be handled internally by Apache. In the script
you use to handle the problem, you will have access to the REDIRECT_UNIQUE_ID environment
variable, which contains the unique identifier of the original request. You should consider
displaying that information to your users, thus enabling them to pass it on to your support
personnel.

Note
If you set an environment variable from ModSecurity, it will be available to the script
that’s handling the error, but with the REDIRECT_ prefix. For example, if you execute
setvar:x=y in a rule somewhere (before the block takes place), the environment vari-
able REDIRECT_x will be available in the error script.

The following example uses PHP for the dynamic functionality:

<? header("HTTP/1.0 403 Forbidden"); ?>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

168 Chapter 9: Practical Rule Writing

<html>
<head>
<title>Security Error</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>

<body>
<h1>Security Error</h1>

<pre>
Your request has been blocked for security reasons. Please try again
in a few minutes. Should the problem persist and you need to call
support, please write down the following problem information:

<? echo htmlspecialchars($_SERVER["REDIRECT_UNIQUE_ID"], ENT_QUOTES, 'UTF-8'); ?>

We apologize for any inconvenience.

<!--
This comment is here to increase the page size and prevent Internet
Explorer from masking the message. More information is available at
the following address:

 http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807
 -->

</body>
</html>

You will note that I used the 509 status code for blocking. This is to avoid a conflict between
the security responses and the responses to a particular status code. It would be misleading to
respond with the security page on a genuine 500 error, for example. The 509 response code is
one of the rare status codes Apache will accept in ErrorDocument that are not in any RFC. We
don’t really want to propagate that status code back to the client, so it’s fortunate that Apache
allows the final status code to be overridden from the error handling script. You will notice
that the first thing the script does is change the status code to something more meaningful.

External Blocking
In some cases, such as when you are under a denial of service attack, friendly blocking is not
exactly going to be a priority—but efficient blocking will. Discussing the defense against DoS
attacks in Chapter 8, Persistent Storage, I mentioned that defending against this type of attack
on the web server level is not the most efficient approach. If you move your blocking (of some
attack types) to the network level, you will be able to simply block all traffic from the offending
IP address, taking the load off your web server.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Honeypot Diversion 169

ModSecurity cannot perform network-level blocking, but there are several ways in which you
can pass the required information to an external system that can:

External scripts
By using the exec action on a rule match, you are able to invoke a system program that
may initiate external blocking. The external script will have access to the offending IP
address through the REDIRECT_REMOTE_ADDR environment variable.

Lua scripts
Using Lua along with the Curl bindings (liblua5.1-curl0 package on my Debian serv-
er), you can perform a HTTP request, passing on the offending IP address to some
remote system. From Lua, you have full access to transaction data, so you are able to
send anything you need.

Honeypot Diversion
If you have a lot of extra time on your hands, an interesting possibility is to block without
the attacker being aware of it happening. You can implement this type of blocking by using
the proxy action to redirect attacker’s requests to a separate system. Such a system is usually
called a honeypot. The idea behind honeypots is that you want to be able to observe attackers’
actions for as long as possible, because each additional request may tell you more about the
problems you have in your system. Honeypots have a potential to unearth the information
your rules never could.

Honeypot diversion is not very practical implemented on a per-transaction level. Your hon-
eypot system may see only some transactions, and the transactions that happen after an at-
tack will again go to the main production system, which defies the purpose of the honeypot.
However, activating your honeypot in persistent manner can work reasonably well. Working
on a per-session or per-user basis is a good choice. A per-IP address honeypot could catch
many innocent users.

Delayed Blocking
Immediate blocking is the easiest approach to use, but it prevents the remaining phase rules
from running. You have blocked the transaction, but the messages associated with it may not
tell you the whole story. For example, your block could have been for a generic problem, but
a very specific attack could be hiding in the request data somewhere. In my experience, rule
sets tend to order their rules from generic to more specific, and that adds to the problem of
information loss.

Delayed blocking, in which you wait until the end of each phase to decide whether to block,
solves the information loss problem. With it, all rules in a phase run, which means that you
get all the messages you can in the audit log.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

170 Chapter 9: Practical Rule Writing

To implement delayed blocking, use one transaction variable (TX.block, for example) as an
indicator of whether blocking is needed. In your rules you no longer block, but set the indi-
cator instead. Then you add a rule to check the indicator at the end of each phase.

The following example demonstrates the concept:

Detect attack X
SecRule ARGS attackX \
 "phase:2,msg:'Detected attack X',\
 setvar:TX.block"

Detect attack Y
SecRule ARGS attackY \
 "phase:2,msg:'Detected attack Y',\
 setvar:TX.block"

Delayed blocking
SecRule TX:block "@eq 1" \
 "phase:2,log,deny,msg:'Phase block due to an earlier match'\
 setvar:!TX.block"

In addition to blocking, the last rule unsets the blocking indicator, which prevents it from
“leaking” into subsequent phases when the engine is running in detection-only mode.

Score-Based Blocking
Score-based blocking is a variation on the delayed-blocking approach. Instead of using an
indicator, you use a score, and decide whether to block depending on the resulting phase score.
For example:

Detect attack X
SecRule ARGS attackX \
 "phase:2,msg:'Detected attack X',\
 setvar:TX.score=+1"

Detect attack Y
SecRule ARGS attackY \
 "phase:2,msg:'Detected attack Y',\
 setvar:TX.score=+5"

Delayed blocking
SecRule TX:score "@gt 5" \
 "phase:2,log,deny,msg:'Phase block due to high score'\
 setvar:!TX.score"

The interesting thing about scoring is that you are not restricted to using only one score;
you can have a score for any transaction characteristic you choose. Consider the following
approaches:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Making the Most of Regular Expressions 171

Phase scores
Keep a separate score for every phase. This enables you to implement delayed per-phase
blocking, but if blocking does not take place, the scores remain available for use in
subsequent phases.

Attack class score
Each attack class could have a score of its own, which would allow for a really fine-
grained approach to detection. The Core Rule Set uses this approach (as well as a few
others) starting with version 2.

Transaction score
Keep a combined transaction score, possibly combining the individual phase scores.

Request and response scores
Keep one score for the first two phases, and another for the second two phases. This
approach allows for the correlation between attack detection and attack results detec-
tion. For example, suppose the request score reflects your suspicion that an SQL injec-
tion attack is taking place. If the response score indicates a trace of the attack (e.g., a
database error message), you can decide to block.

Persistent scores
Once persistent collections are initialized, the concept of scoring can be applied to high-
er-level elements such as IP addresses, sessions, and users. The only difference is that
transactions always start afresh, with a score of zero, whereas the persistent elements
keep their scores until they expire. Persistent score thus needs to involve a depreciating
element so that it effectively maintains itself. I discussed persistent scoring at length in
Chapter 8, Persistent Storage.

Score-based blocking is very neat, but it can be difficult to implement. The burden is on the
rule writer to come up with a meaningful way to combine rule scores into combined values,
which is necessary for that final threshold check to work. For example, you can’t have several
rules match for the same underlying problem, because that could artificially push the score
over the threshold.

Making the Most of Regular Expressions
Although ModSecurity supports many operators, regular expressions are so powerful and ver-
satile that they remain the most often seen choice in rules. ModSecurity uses the Perl Com-
patible Regular Expressions library [http://www.pcre.org], better known as PCRE. This is a
well-known and widely used regular expression library, and it is also used by Apache. Because
they are so powerful, regular expressions will often surprise you, and you’ll realize that they
are more capable than you thought. This section will highlight the most important aspects of
PCRE and the way this library is used in ModSecurity, but it is only the tip of the iceberg. I

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.pcre.org
http://www.pcre.org
http://www.pcre.org

172 Chapter 9: Practical Rule Writing

highly recommend that you familiarize yourself with the PCRE documentation, which con-
tains everything you need to know.

How ModSecurity Compiles Patterns
Regular expression patterns are compiled (converted into an efficient internal representation)
before they are used. The compilation step helps the library improve performance, doing as
much work as possible only once, at configure time. The compilation flags affect how patterns
are used and you need to be aware about them. In the most important place where regular
expressions are used, the @rx operator, ModSecurity uses two compilation flags:

PCRE_DOLLAR_ENDONLY
Also by default, a dollar metacharacter will match a newline at the end of a string.
Users often do not expect this, and it messes with the rules that want to have complete
control over what is allowed in certain places. By using PCRE_DOLLAR_ENDONLY to compile
patterns, the dollar character is made to match only at the end of the input.

PCRE_DOTALL
By default, a dot metacharacter in a pattern matches all characters except those indicat-
ing newlines. In a security context, that opens a potential weakness where an attacker is
able to use a newline to break up the attack payload and prevent a pattern from match-
ing. With PCRE_DOTALL set, a dot metacharacter will genuinely match any character.

Now that you know which compilation flags are used, it is important to learn about two that
are not used:

PCRE_CASELESS
Enabled case-insensitive matching. Because this flag is absent when the @rx patterns are
compiled, all patterns are case-sensitive. (Use the t:lowercase transformation function
to achieve case-insensitive matching, or read the next section, which shows another
way.)

PCRE_MULTILINE
This flag changes the behavior of the ^ and $ metacharacters to force them to match at
a beginning of a line and at an end of a line, respectively. Without it, PCRE will treat
the entire input string as a single line. The PCRE default is used for the @rx operator.
That means that a ̂ metacharacter will always match at the beginning of the string, and
$ will always match at the end.

There are several other places where regular expressions are used, and although they are not
as security-sensitive as the @rx operator, you should still be aware of how they are compiled.
Table 9.2, “Pattern compilation flags” gives a complete picture.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Changing How Patterns Are Compiled 173

Table 9.2. Pattern compilation flags

Usage Compilation flags used

@rx PCRE_DOLLAR_ENDONLY, PCRE_DOTALL

@verifyCC PCRE_DOTALL, PCRE_MULTILINE

SecAuditLogRelevantStatus PCRE_DOTALL

SecRuleRemoveByMsg No flags used

Variable selection (e.g., ARGS) PCRE_CASELESS, PCRE_DOLLAR_ENDONLY, PCRE_DOTALL

Changing How Patterns Are Compiled
If you are not happy with how ModSecurity compiles patterns, you’ll be glad to hear that
PCRE allows you to override the compile flags from within the pattern itself. For example, the
following rule, which does not use any transformation functions, will match the word attack
no matter what case is used:

SecRule ARGS "(?i)attack" phase:2,t:none

The (?i) part, placed at the beginning of the pattern, activates the PCRE_CASELESS flag for the
entire pattern. It is also possible to change a setting for only a part of a pattern, by placing
the modifier within.

SecRule ARGS "attack (?i)keyword" phase:2,t:none

The previous expression will match attack keyword and attack KeYWORD, but not ATTACK
keyword. If you place the modifier in a subpattern, then only the remainder of the subpattern
will be modified:

SecRule ARGS "(key(?i)word) attack" phase:2,t:none

The previous expression will match keyWORD attack, but not keyWORD ATTACK nor KeyWORD
attack.

To remove a flag, use a dash in front of the letter. The following pattern unsets the PCRE_DOTALL
flag that is used by ModSecurity by default:

SecRule ARGS "(?-s)keyword" phase:2,t:none

The complete list of the modifiers you can use in this way is in Table 9.3, “Pattern modifiers”.
For complete meanings, look the modifiers up in the PCRE documentation.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

174 Chapter 9: Practical Rule Writing

Table 9.3. Pattern modifiers

Modifier Meaning

i PCRE_CASELESS

J PCRE_DUPNAMES

m PCRE_MULTILINE

s PCRE_DOTALL

U PCRE_UNGREEDY

x PCRE_EXTENDED

X PCRE_EXTRA

Common Pattern Problems
Mistakes in regular expression patterns are common, but two are seen more often than others:

Forgetting to escape the metacharacters
The most frequently unescaped metacharacter is the dot. It most commonly happens
when you’re writing patterns to match IP addresses, which have many dots in them.
An unescaped dot will match any character, matching against unintended characters if
it was not meant to be used as a metacharacter. Problems with the + and ? characters
are frequent as well.

Not using the ^ and $ anchors when matching entire input
The use of the ^ and $ anchors is required when you want your patterns to match com-
plete input strings. If you omit one or the other, you allow the attacker to send anything
before your pattern (when you don’t have the ^ at the beginning) and anything after
your pattern (when you don’t have the $ at the end). Without the anchors, a pattern
may match a substring in the middle, ignoring anything else.

Regular Expression Denial of Service
Regular Expression Denial of Service (or ReDoS) is a relatively obscure problem that affects
every regular expression writer. Some regular expression constructs are known to suffer from
very bad (exponential) performance when certain edge cases are encountered. If you are not
careful, you can write a pattern that can be manipulated from the outside by an attacker to
consume most or all of your server’s resources.

Here are some examples of vulnerable patterns borrowed from Alex and Adar (reference fol-
lows):

• (a+)+

• ([a-zA-Z]+)*

• (a|aa)+

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Resources 175

• (a|a?)+

• (.*a){x}, for x > 10

For more information on this subject, look for the following presentations:

• Regular Expression Denial of Service (2003), by Scott A. Crosby

• Regular Expression Denial of Service (2009), by Alex Roichman and Adar Weidman

Note
Starting with ModSecurity 2.5.12, the regular expressions use conservative limits (the
PCRE defaults were previously used), allowing only up to 1,500 matches and up to
1,500 internal recursions. This change makes the rules less prone to denial of service
attacks. The limits can be changed at configure time using the SecPcreMatchLimit
and SecPcreMatchLimitRecursion directives.

Resources
Don’t be surprised if you sometimes get overwhelmed working with regular expressions.
That’s entirely normal and will go away in time. You don’t have to buy a book in order to be-
come proficient in regular expressions, but it will certainly help if you do. My only issue with
the available books is that they all cover many regular expression flavors, and I am interested
only in PCRE. There are at least two books you should look at:

• Mastering Regular Expressions, by Jeffrey Friedl (O’Reilly, 2006), is widely considered to
be a classic work on regular expressions.

• Regular Expressions Cookbook, by Jan Goyvaerts and Steven Levithan (O’Reilly, 2009),
is a recent addition to the regular expression work, and adopts a more practical style of
learning.

You should also look at one of these tools, as they will enable you to interactively design and
analyze regular expressions:

• RegexBuddy [http://www.regexbuddy.com], a commercial tool written by Regular Ex-
pressions Cookbook co-author Jan Goyvaerts, is often recommended as the ultimate reg-
ular expression assistant.

• The Regex Coach [http://weitz.de/regex-coach/] is a free tool written by Edi Weitz.

• Expresso [http://www.ultrapico.com/Expresso.htm] is a free tool (requires registration)
from Ultrapico.

Working with Rule Sets
Rule sets are packaged collections of rules designed to address a particular problem. In this
section I will discuss them first from a user’s point of view, and then from a rule set writer’s

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.regexbuddy.com
http://www.regexbuddy.com
http://weitz.de/regex-coach/
http://weitz.de/regex-coach/
http://www.ultrapico.com/Expresso.htm
http://www.ultrapico.com/Expresso.htm

176 Chapter 9: Practical Rule Writing

point of view. You should read both sections no matter which group you belong to, because
they are just different aspects of the same story.

Deploying Rule Sets
If a rule set is well-written, deploying it is a matter of deciding how to react to its alerts and
adding the rule set to your configuration. In other words:

Configure default blocking policy
SecDefaultAction "phase:1,log,auditlog,pass"

Activate Ultimate rules
Include conf/ultimate-rules-9.99/*.conf

You shouldn’t use blocking when you deploy a rule set for the first time, because you don’t
know if it will produce many false positives. Warnings will be sufficient for the first couple of
days, or weeks. Once you gain confidence that the rule set will not ruin you financially, you
can switch to blocking if you wish.

There are only two maintenance activities you should ever do when it comes to rule sets:
dealing with false positives and updating to new releases.

Dealing with False Positives
It’s all right for a rule set to have false positives, as long as it doesn’t have too many. You can
deal with them in the following ways:

• Ignore occasional false positives.

• Use SecRuleRemoveById or SecRuleRemoveByMsg to deactivate the rule that is producing
too many false positives.

• Use SecRuleUpdateActionById to change how a rule reacts.

• Use SecRuleUpdateTargetById to change what a rule inspects.

• Deactivate the original rule, copy it to your local configuration (don’t forget to change
the ID in the process), then modify it to work better in your environment.

No matter which option you choose, you should strive not to change the original rule set files.
Doing so will prevent you from upgrading the rules with a simple file copy.

Upgrading to New Releases
Updating to a new version should involve downloading the new files, going through the doc-
umentation to understand the changes, and possibly using diff to see exactly what changed.
Some people prefer to switch back to detection-only for a while, just to make sure there won’t
be any nasty surprises. Others, who have adequate budgets, will first try the new rules in a

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Writing Rules for Distribution 177

staging environment. It is advisable to keep the previous version of the rules around, just in
case you don’t find the new version satisfactory.

If you’ve copied and modified any of the rules, when upgrading to a new release don’t forget
to check if the rule has been improved in the meantime.

Note
ModSecurity comes with a Perl script called rules-updater.pl, which automates the
upgrade process. It is located in the bin/ directory of your ModSecurity installation.

Writing Rules for Distribution
When you’re writing rules for yourself, you are often able to make design shortcuts because
you do things in certain ways, and there is little sense in allowing for different behavior. When
writing for others, however, about the only certain thing is that they will want things done
differently. When someone downloads a rule set, they basically expect to be able to plug it into
their web site and use it with little fuss. What they don’t expect is to have their site overtaken
by the newly installed rules. Thus the key to writing rules for distribution is to give your users
options and let them decide what to do:

Avoid mixing rules with configuration
Your users will have spent significant time deciding exactly how they wish to run Mod-
Security, and you don’t want to surprise them by overriding their configuration with
something else. Besides, your configuration choices may not be adequate for their cir-
cumstances.

Detect problems, but do not react to them
Your job, as a rule set writer, is to detect problems, not react to them. Leave the react-
ing to your users. If you are writing straightforward blocking rules, you only need to
remember to use block as your disruptive action. If you’re writing advanced rules that
produce attack scores, don’t take any action, but document what the outcome of your
rules is going to be and leave to your users to do the rest.

Split rules into modules
Splitting complex rule sets into modules is always a good idea, especially if you can
make the modules differ in terms of precision and performance. The split into modules
is a recipe for user satisfaction when coupled with good documentation that explains
the characteristics of each module.

Document your rules
Everything is game provided you tell your users in advance what to expect. Include such
items as installation instructions, performance, the update mechanism, and so on. The
more you tell them, the happier they’ll be. On the rule level, make sure that every rule
contains every little bit of meta-data you can think of.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

178 Chapter 9: Practical Rule Writing

If you want practical advice, consider the following:

• Always specify id, rev (unless 1), msg and severity.

• IDs must be allocated from the pool assigned to the publisher.

• Once allocated, the rule IDs must not be reused for other rules.

• Rule revision number must be incremented with every change to the rule.

• List all desired transformation functions, starting with t:none.

• Use only pass and block as the disruptive action.

• Never use nolog in combination with block.

• Use logdata:%{TX.0} with complex rules, which will help your users understand exact-
ly what matched.

Use only the following directives:

• SecAction

• SecComponentSignature

• SecMarker

• SecRule

• SecRuleScript

Never use the following actions:

• allow

• append

• ctl

• drop

• exec

• initcol

• pause

• prepend

• proxy

• redirect

• setuid

• setsid

• status

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Resources for Rule Writers 179

Resources for Rule Writers
First of all, you are off to a good start, because this book will tell you most of what you need
to know about ModSecurity and rule writing. You are already in a much better position than
anyone who’s used ModSecurity in the past several years.

Your next step should be to get up to speed with application security. Good books on appli-
cation security are hard to find, but there are a few that you can’t afford to miss:

• SQL Injection Attacks and Defense, by Justin Clarke et. al (Syngress, 2009)

• The Tangled Web: A Guide to Securing Modern Web Applications, by Michal Zalewski
(No Starch Press, 2011)

• The Web Application Hacker’s Handbook, 2ed, by Dafydd Stuttard and Marcus Pinto
(Wiley, 2011)

• Web Application Obfuscation, by Mario Heiderich, Eduardo Alberto Vela Nava, Gareth
Heyes, and David Lindsay (Syngress, 2010)

With the books, you will be able to cover a lot of ground quickly, but you will pick up the
majority of your skills by observing the application security mailing lists and reading new
research papers as they are published.

In addition, consider the following resources:

• XSS Cheat Sheet [http://ha.ckers.org/xss.html], assembled by Robert Hansen (also
known as RSnake)

• The Spanner [http://www.thespanner.co.uk], blog written by Gareth Heyes

• PHPIDS [http://php-ids.org], an IDS for PHP applications (but the signatures are uni-
versal)

Rule writing is mostly about trial and error. You start with a known attack and try to write
rules to detect it. Then you go back and try to modify the attack to still work but evade the
rules. Detecting attacks actually isn’t that difficult, but doing the same while avoiding innocent
traffic can be a real challenge.

Don’t forget to download and analyze the publicly available rule sets, which contain numerous
examples of rule writing:

• OWASP ModSecurity Core Rule Set [https://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project]

• Flameeye’s Ruleset for ModSecurity [http://www.flameeyes.eu/projects/modsec]

• Emerging Threats [http://www.emergingthreats.net] are designed for Snort and Suri-
cata, but their rules contain a wealth of information that can easily be reused.

You shouldn’t expect those rule sets to be perfect, but you will learn a lot by studying how
they approach inspection and detection.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.thespanner.co.uk
http://www.thespanner.co.uk
http://php-ids.org
http://php-ids.org
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
http://www.flameeyes.eu/projects/modsec
http://www.flameeyes.eu/projects/modsec
http://www.emergingthreats.net
http://www.emergingthreats.net

180 Chapter 9: Practical Rule Writing

Summary
In this chapter, I touched on a number of practical tasks, most of which are needed by every
single ModSecurity user. Whitelisting, blacklisting, and virtual patching constitute the core
of what ModSecurity was designed to do. In the section on regular expressions, I gave you
a good introduction to the topic, but you really need to buy another book or two and learn
everything there is to know about it. It’s the single most powerful tool for inspection, and, to
this day, I am sometimes amazed with what can be done with it.

Our next step is everyone’s favorite topic—performance. I will give you the information you
need to understand performance, which is important for your ability to write efficient rules, as
well as measure performance, which is important so that you can know how your ModSecurity
installations perform.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

181

10 Performance
In this chapter, I present a detailed analysis of the performance of ModSecurity. Performance
is everybody’s favorite topic, but, judging on evidence alone (i.e., the lack of the users com-
plaining), ModSecurity runs fast enough. That said, there is no reason for it to run slower
than it could, and this chapter will both measure the performance and tell you how to get
ModSecurity to run efficiently.

Understanding Performance
Our first task is to understand where ModSecurity spends its time. Different sites have differ-
ent usage profiles, and when you consider the fact that the rules will be different, too, one
performance aspect that is not important to you may be very important to someone else.

With three key resources in mind (CPU, RAM, and I/O), I present you with a detailed list of
the performance hot spots in ModSecurity:

Parsing
ModSecurity reuses the work performed by Apache, but, because it goes deeper, it needs
to do more parsing of its own. It’s not much work, however. On a simple GET request,
only the parameters in the query string will be parsed. On POST requests, the parame-
ters placed in a request body will be parsed. Unless you’re parsing XML (disabled by
default), the overhead of parsing will not be a cause of concern.

Buffering
I guess you could say that ModSecurity uses a lot of RAM, which is necessary in order
to allow for reliable blocking. Even without the buffering requirement, the additional
data processed by ModSecurity has to be stored somewhere. The difficult thing with
RAM is that the added consumption is difficult to measure, and can be measured only
indirectly, by observing the differences in behavior with and without ModSecurity.

File upload interception
Handling file uploads can slow things down, for two reasons. First, to avoid using too
much RAM, request bodies will typically be stored on disk, which adds to I/O require-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

182 Chapter 10: Performance

ments. There’ll be two passes: one to store a request body and another to read it (so
that it can be forwarded for processing). The I/O overhead is further increased if you
choose to use file upload interception, because ModSecurity will also need to extract
individual files from the stream of request body data in order to store them separately.

Rule processing
The rule processing CPU requirements constitute the bulk of the ModSecurity over-
head. The good news is that you are in full control: the fewer rules you have in your
configuration, the better the performance. If you read this book and follow my advice,
I don’t expect you’ll have any performance trouble. Watch it with third-party rule sets,
though. Do not assume that they will perform well and always test them before using
them in production.

Persistent storage operations
By definition, a persistent storage mechanism is going to cost more than just storing
data in RAM, because you need to ensure that the data you put in survives application
restarts. ModSecurity’s persistent storage is disk-based, which means that it is not as
fast as it could be (if it used shared memory, for example). Modern operating systems
are very good at buffering filesystem operations, so the performance should be decent.
It’s not something to be concerned about, but it’s something that should be monitored.

External operations
External operations are not going to cost you anything unless you use them, which
means that this entry is here to remind you of the potential cost. Things such as the
@rbl operator (which performs a DNS request) and the exec action (which executes an
external binary) are outside the control of ModSecurity and should be watched for.

Logging
Assuming you don’t make any configuration mistakes (like enabling debug logging in
production), logging is not going to cost you much. Most of the cost will go toward
performing audit logging, which should take place only once in a while, after all. If you
are keen to use full audit logging, you should consider using a separate disk array for
that purpose alone.

Top 10 Performance Rules
If there’s one thing that people love more than talking about performance, it’s top 10 lists. So
what better way to discuss performance but with its own top 10 list! If you have just 10 minutes
to spend thinking about this problem, give the following list a go. In no particular order:

Avoid debug logging in production
The debug log is very verbose, especially at higher levels. At best, the debug log level in
production should be kept at 3, in which case it will contain only the essential messages.
A copy of the essential messages will be recorded in the error log, so it is even possible to

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Top 10 Performance Rules 183

completely turn debug logging off. If your web server installation uses an error log per
virtual host, however, you may benefit from keeping the debug log level at 3, because
you will then have a record of all ModSecurity actions on the server, for all virtual hosts.

Understand performance
Hopefully, you have already read the previous section, which gives an overview of where
the performance issues may appear. When you know that, and you also know what
affects the performance of the rules, you’ve made it halfway to achieving the desired
performance levels.

Enforce limits
The role of runtime limits is to put a cap on the unknown. You can never control the
external factors, but you can (and should) refuse to process a request that would neg-
atively affect your system. For more information on what to configure and how, refer
to the detailed configuration instructions in Chapter 3, Configuration.

Minimize false positives
Eliminating false positives will not only make it easier to spot real problems, but will
also eliminate the unnecessary I/O operation required to perform audit logging.

Be reasonable in what you expect
Extensive content inspection can be costly. That usually isn’t a problem on a dedicated
reverse proxy (especially one designed to work as a web application firewall), but if you
are dealing with a web server that’s already running at the limit of its capacity, you can’t
expect to add ModSecurity and get away with it.

Use adequate matching techniques
If you’re writing your own rules, the best way to make them run efficiently is to use
the pattern matching techniques that match the requirements. You’ll find a detailed
analysis of the differences among the available options later in this chapter.

Know your sites and your rules
Knowing what your sites do and what your rules do (even if you didn’t design either
yourself) will give you a rough idea what to expect. The more you know about the
system, the better.

Keep track of performance
Always keep a performance log. It will give you a peace of mind when you are doing fine,
and help you spot performance issues early when you aren’t. Having a performance log
is also essential to deal with the usually unsubstantiated “your site is slow” accusations.

Test response content types before buffering
Another configuration mistake that’s easy to make is to use response body buffering
on all requests, which would increase RAM consumption and waste the time used on
the response inspection.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

184 Chapter 10: Performance

Test your limits
You should know what your system is capable of before you post that link to Slashdot.
Finding out afterwards is usually not good. It is also a good idea to have a plan for what
you’ll do when your system becomes overloaded.

Performance Tracking
If performance is a concern, your first step should always be to measure it. In that area, I have
some good news and some bad news. The bad news is that ModSecurity version 2.5.x does not
provide much when it comes to performance measurement. There is some limited support
in the Stopwatch header in the audit logs, but the information contained there is a relic of
ModSecurity 1.x, and inadequate for ModSecurity 2.x.

The good news is that this area was greatly improved in ModSecurity 2.6, which means that
you’ll be able to accurately track ModSecurity performance once you upgrade. In this section,
I will focus only on what’s possible to do with ModSecurity 2.6.

Performance Metrics
The new implementation of performance tracking in ModSecurity always keeps track of a
number of performance metrics. Partial access to that data is available in real time, using
any of the variables from the PERF_ family. You can, for example, retrieve the duration of a
previously completed phase, but you can’t get any information for the phase that is currently
being processed.

All the metrics, apart from the duration of the audit logging phase, are recorded in the audit
log entry of a transaction, for which the new Stopwatch2 header is used:

Stopwatch2: 1264256494438648 5131; combined=3917, p1=11, p2=3653, p3=3, p4=29, …
p5=221, sr=0, sw=0, l=0, gc=0

The first two values are the same as in the original Stopwatch header (request start time and
duration). The performance metrics follow after the semicolon:

• combined: combined processing time

• p1–p5: time spent in each of the rule phases

• sr and sw: time spent reading from and writing to persistent storage, respectively

• l: time spent on audit logging

• gc: time spent on garbage collection

All the values are given in microseconds.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Performance Logging 185

Performance Logging
Performance logging must be performed when all work ModSecurity does on a transaction is
complete. That means that you’ll have to use Apache’s logging facilities (mod_log_config). You
can choose to add the additional information to your existing access log, or create a separate
log file. Using a feature that was added as part of the performance tracking improvements,
it is possible to log any ModSecurity variable from within mod_log_config, using the special
%{VARNAME}M format string (only the uppercase M works; the case is not important in variable
names). That improvement, along with the move of phase 5 to happen prior to Apache doing
its logging, makes the final performance logging possible.

Use Apache’s CustomLog directive to create a special log to track ModSecurity performance:

CustomLog logs/modsec_performance.log "%V %h %l %u %t \"%r\" %>s %b | …
%{UNIQUE_ID}e %D | %{PERF_ALL}M"

The variables on the first line all come standard with mod_log_config; if you’re not sure about
their meaning, look them up in the Apache documentation. On the second line, we are taking
advantage of the special PERF_ALL variable, which was designed to include all the combined
performance metrics in the same format as in the Stopwatch2 header. What other information
you include is up to you, but I suggest that you always record the UNIQUE_ID value, which
will enable you to cross-reference an entry in this log to other information you might have (a
complete audit log entry, for example).

If you don’t want to keep a separate performance log, you should at least add
%{PERF_COMBINED}M to your existing access log.

Real-Time Performance Monitoring
Because you are able to access the performance counters from within ModSecurity itself, you
can write a rule to track the performance in real time. Assuming that you want to be warned
about the requests on which ModSecurity spends more than 2.5 milliseconds working, you
write:

SecRule PERF_COMBINED "@gt 2500" \
 "phase:5,log,pass,msg:'Slow ModSecurity rules detected'"

Load Testing
The only way to truly measure the performance of a rule set is in production, or with a stagging
platform from which the production traffic can be faithfully replicated. Web performance
testing is difficult on its own, even when ModSecurity is not involved. Because rule sets do
many things, using anything but real traffic will mean that you are testing only one aspect of
the rule set, which may or may not be important for you.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

186 Chapter 10: Performance

Note
The rule sets tested here were current when the first edition of this book was written,
but they have since been superseded by newer and improved releases. However, the
purpose of this section is not to benchmark the rule sets but to show how the bench-
marking is done. Rule set performance can change from version to version, and—
given time—you should always run a quick test to verify that there was no significant
degradation compared to the version you are using.

Still, having some idea about what the performance will be like is advisable. In this section, I
will test the performance of the free ModSecurity rule sets that are currently available:

• ModSecurity Core Rule Set 2.0.4, which is the latest version at the time of writing. The
Core Rule Set 2.x is distributed with ModSecurity as of version 2.5.10.

• ModSecurity Core Rule Set 1.6.1, which is the final version from the 1.x branch (and
you can get it from the ModSecurity 2.5.9 tarball).

• The free version of the Gotroot rules, dated October 2009 (the most recent version
available at the time of this writing).

For the test, I used the complete rule sets (with minor alterations to remove a false positive
or two), with the exception of the CRS 2.0.4, where I also removed the rules derived from the
PHPIDS project.

In addition to the rule set tests, I made two baseline tests: one without ModSecurity and the
other with ModSecurity, but without any rules.

In preparing for the test, I opted for a simple approach that will test the rule sets with a non-
trivial request. It’s not the best-case scenario, but not the worst-case scenario, either:

1. I wrote a PHP script that simulates an application doing some work. I tweaked the
script until I got it to spend about 30 ms “working.”

2. I performed some initial tests without ModSecurity to determine the limits of the
installation. The hardware used was a quad-core 2 GHz Xeon processor, with 4 GB
RAM. Based on the results, I settled on testing using between 10 and 150 requests per
second. I also made sure that neither the Apache configuration nor network band-
width was going to create a performance bottleneck. For the performance tests, you
want the CPU to be the bottleneck.

3. For the test, I picked up a GET request with 12 parameters, with the size just under 300
bytes.

For the testing I used the autobench tool, with the following command line:

$ autobench --single_host --host1 IPADDRESS --uri1 /index.php\?firstname=John\
\&lastname=Smith\&username=john.smith\&password=12345678\&password_repeat=\
12345678\&addressline1=First%20line%20of%20address\&addressline2=Second%20\
line%20of%20address\&postcode=WXXXX\&city=London\&country=United%20Kingdom\

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Load Testing 187

\&phone=+447766XXXXXX\¶m=john.smith@example.com --low_rate 1 \
--high_rate 15 --rate_step 1 --num_call 10 --num_conn 100 \
--timeout 5 --file results.tsv

I extracted two sets of data from the tests results: response rate and response time. I then used
gnuplot to create the graphs:

set terminal postscript eps mono dashed
set output "response_rate.ps"
set key inside left
set key box
set data style linespoints
set ylabel "Response rate [req/s]"
set xlabel "Request rate [req/s]"
set grid
set xrange [10:150]
set yrange [0:400]

plot "response_rate.tsv" using 1:2 title "Baseline", \
 "response_rate.tsv" using 1:3 title "No Rules", \
 "response_rate.tsv" using 1:4 title "CRS 2.0.4", \
 "response_rate.tsv" using 1:5 title "CRS 1.6.1", \
 "response_rate.tsv" using 1:6 title "Gotroot Oct 20"

The resulting graphs are shown in Figures 10.1 and 10.2.

Figure 10-1. Response time test

The response time graph is the more informative one:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

188 Chapter 10: Performance

1. Without ModSecurity, the server response time is roughly 30 ms when the load is low.
It stays the same until about 30 requests per second, after which it begins to hover
around 50 ms. Performance deteriorates after 100 requests per second.

2. There is virtually no difference in performance when ModSecurity is added without
any rules.

3. The three rule sets vary greatly in performance:

• The CRS 1.6.1 is very fast, adding only a couple of milliseconds of latency.

• The CRS 2.0.4 adds about 12 milliseconds of latency.

• The free Gotroot rules add about 30 milliseconds of latency, doubling the request
processing time.

4. Each rule set has a different point at which the performance is significantly degraded.
With CRS 2.0.4, you can get up to 80 requests per second; with the free Gotroot rules,
about 50. You can see these points better in Figure 10.2. With CRS 1.6.1, the point re-
mains pretty much where it was when the rules weren’t there.

Figure 10-2. Response rate test

During the tests, I used vmstat to keep my eye on the overall state of the test system. I noticed
a rough correlation between the speed of a rule set and its RAM consumption. None of the
rule sets made a significant dent to the free RAM on the 4 GB server, but there were variations
of about 100 MB (CRS 2.0.4) and 200 MB (Gotroot).

Note
Keeping a historical record of the vital system information of production systems is
very important in case you ever need to troubleshoot a problem after the fact. On

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Rule Benchmarking 189

Debian systems, install the sysstat package; for others, consult the vendor docu-
mentation.

The test results show us that not all rule sets are created equal: some are focused on perfor-
mance more than others. Whenever possible, you should test the rule set you are evaluating
under circumstances that are as close as possible to the ones in production. Also, the rule sets
consist of many parts—you don’t necessarily have to run all of them. If you invest some time
into understanding what a rule set does, you’ll probably be able to remove some parts you
don’t need and achieve better performance.

Rule Benchmarking
Accurately measuring the performance of individual rules in not possible using the same ver-
sion of ModSecurity that you use in production. Because the rules run for a very short period
of time, not only would any attempts to measure the individual performance be inaccurate,
but because the measurements themselves take time too, the overall execution speed would
be noticeably reduced.

To allow for fine-grained performance measurement, ModSecurity has a compile-time op-
tion called --enable-performance-measurement, which activates the normally inactive perfor-
mance measurement code. The version of ModSecurity you produce this way is not usable in
production, because it will be 1,000 times slower than a normal one. That is so because in the
performance measurement mode, each rule is run 1,000 times in a loop!

In this section, I will guide you through the steps to accurately measure the performance of
your rules.

Preparation
For your rule performance tests, you will need to prepare a specially-compiled version of
ModSecurity. This is how to prepare one:

1. Choose a computer that is not used for anything else, which will enable you to get
consistent performance numbers. This computer will be used as a test server. You will
not need a client computer, because the nature of the tests is that virtually no resources
are consumed on the client side.

2. Install Apache on the test server.

3. Run ModSecurity configure with --enable-performance-measurement and any other
configure-time option that you need.

4. Install and configure ModSecurity, performing some basic tests to ensure that every-
thing works as expected.

5. Make sure to disable audit logging and set the debug log level to 0. This is very impor-
tant to prevent the logging with interfering with the tests.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

190 Chapter 10: Performance

At this point, you may wish to perform a request or two to understand how performance
measurement works. Add a couple of rules to your configuration and send one request to the
web server. In your error log, you will get output similar to this one (I’ve removed a bunch
of nonessential stuff to make it easier to read):

ModSecurity: Phase 1
ModSecurity: Phase 2
ModSecurity: Rule 9341350 [id "-"][file "/home/ivanr/apache/conf/httpd.conf"]…
[line "464"]: 1 usec
ModSecurity: Phase 3
ModSecurity: Phase 4
ModSecurity: Phase 5

In the performance measurement mode, ModSecurity will quietly run all the rules it has in
the configuration (looping 1,000 times around each rule) and print the results at the end of
transaction processing. The results will contain a measurement taken for every rule. In my
example, I had only one rule in my configuration. This particular rule ran very fast, because
it wanted to look at request parameters, but my request didn’t have any. If you wish to exper-
iment for a while before moving on to more complex tests, add the following rule to your
configuration:

SecRule ARGS test phase:2,t:none,nolog,pass

After you restart Apache, start sending requests with a varying number of parameters, and
observe the differences in rule performance.

The way you write your rules—every little difference—will affect the performance, just as it
would in real life. To get consistent results, you need to watch for two things:

Your rules shouldn’t block
If a rule blocks, the rules that follow will not get a chance to run. You can easily fix this
problem by using the detection-only mode of deployment.

Your rules shouldn’t log
If you can’t avoid the matching, use the nolog action to suppress logging.

Test Data Selection
Not all transactions are equal when it comes to rule testing. For example, most rules focus
on request parameters, which means that a request that has no parameters will complete very
quickly (as our first performance test earlier shows). For your tests, you should select several
transactions that are representative of the workload on the target system. You can construct
the test data based on what you know about the production system, or you can simply guess.
If you have the time, the best approach is to record the key characteristics and build the tests
based on that data.

The key characteristics are the following:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Test Data Selection 191

• Timestamp

• Duration

• Request method

• Query string length

• Request content type

• Request body length

• Combined size of all parameters, with file data excluded

• Number of parameters

• Response status

• Response content type

• Response body size

To record these characteristics, you will need a few ModSecurity rules and one CustomLog
directive. The rules are used to collect the required information and transform it into the form
that can be logged by Apache:

How many parameters are there? We have to do this because
variable expansion does not currently support counting
SecRule &ARGS ^.+$ \
 "phase:5,nolog,pass,t:none,capture,\
 setvar:TX.ARGS_COUNT=%{TX.0}"

Find out the length of the query string
SecRule QUERY_STRING ^.+$ \
 "phase:5,nolog,pass,t:none,t:length,capture,\
 setvar:TX.QUERY_STRING_LENGTH=%{TX.0}"

Record per-transaction statistics
CustomLog logs/stats.log "%V %h %t %D \"%r\" | %{TX.QUERY_STRING_LENGTH}M \
\"%{REQUEST_CONTENT_TYPE}M\" %{REQUEST_BODY_LENGTH}M %{ARGS_COMBINED_SIZE}M \
%{TX.ARGS_COUNT}M %>s \"%{RESPONSE_CONTENT_TYPE}M\" %B"

If you collect a representative sample of your site’s traffic over a period of time, you should
be able to build an accurate profile for testing.

Note
Most of the variables that you will be logging depend on ModSecurity having access
to request body data, which means that the SecRequestBodyBuffering directive must
be enabled for the statistics to be accurate.

Having described this thorough approach to performance testing, I will admit that I often use
a much simpler approach. I have three requests that I used:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

192 Chapter 10: Performance

1. A simple GET request, representative of the requests used to retrieve static resources.
No parameters.

2. A short POST request that simulates a registration form, or a feedback form. It has 12
parameters with about 300 bytes of data. This request is designed to see how the per-
formance changes as the number of parameters grows.

3. A long POST request with a single very long parameter (about 15 KB), aimed at deter-
mining how rules handle large amounts of data.

I will use those three requests for testing in the remainder of this section.

Performance Baseline
Without further ado, I present the rules that I use to establish the baseline performance of
the ModSecurity rule engine. Each test is designed to exercise one aspect of the rule engine
performance while minimizing all others. Examine the comments that precede the rules to
understand what each rule does.

A rule that uses a non-existent variable.
SecRule XML @noMatch phase:1,nolog,pass

A rule that always has one target variable,
but which never matches (and there's no operator cost).
SecRule REMOTE_ADDR @noMatch phase:1,nolog,pass

A rule that always matches, designed to assess the cost
of the tasks performed on a match. (Also no operator cost.)
SecRule REMOTE_ADDR @unconditionalMatch phase:1,nolog,pass

Unconditional action that doesn't do anything.
SecAction phase:1,nolog,pass

Unconditional action that sets a variable.
SecAction phase:1,nolog,pass,setvar:tx.x=1

A rule that applies a no-cost operator to every parameter,
which was designed to see how the cost rises with the
number of parameters present.
SecRule ARGS @noMatch phase:2,nolog,pass

A rule designed to determine the cost of a single-parameter
match with no operator cost and no transformation functions.
SecRule ARGS:param @noMatch phase:2,nolog,pass,t:none

A rule designed to determine the cost
of the lowercase transformation function.
SecRule ARGS:param @noMatch phase:2,nolog,pass,t:lowercase

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Optimizing Pattern Matching 193

One complete, reasonably complex rule, with
no transformation functions.
SecRule ARGS "\bon(abort|blur|change|click|dblclick|dragdrop|end|error|\
focus|keydown|keypress|keyup|load|mousedown|mousemove|mouseout\
mouseover|mouseup|move|readystatechange|reset|resize|select|submit|\
unload)\b\W*?=" \
 phase:2,nolog,pass,t:none

The baseline performance testing results (of ModSecurity 2.5.x) can be seen in Table 10.1,
“Baseline performance results”. The results are given in microseconds.

Table 10.1. Baseline performance results

Rule GET POST Long POST

No variable cost 1 1 1

One variable, no match, no operator cost 6 6 6

One variable, match, no operator cost 9 9 9

Unconditional match, but no actions 9 9 9

Unconditional match, set variable 10 10 10

All arguments, no match, no operator cost 1 66 7

One argument, no match 1 7 7

One argument with t:lowercase, no match 1 7 114

Nontrivial regular expression 1 68 62

We draw the following conclusions:

• There seems to be a fixed per-variable handling cost (engine overhead) of about 5 mi-
croseconds. This does not seem like much, but it adds up. Running a rule against one
variable took 6 microseconds, but running it against 12 variables took 66 microsec-
onds. This cost is significant, because that’s what most rules will do: iterate through all
available parameters.

• There’s a per-match cost of about 3 microseconds. Because matches are relatively rare,
it’s not something we need to be concerned about.

• Rules without any parameters are processed very quickly.

• The cost of transformation is substantial when used with long parameters. With the
one 15 KB parameter, the lowercase transformation used in excess of 100 microsec-
onds. You should thus use case-insensitive regular pattern matching, which will give
you better performance. Use the transformation functions when there’s no other op-
tion.

Optimizing Pattern Matching

Property of Girish Motwani <kushalbooks@yahoo.co.in>

194 Chapter 10: Performance

Using the performance measurement mode of ModSecurity, we established that there’s an
inherent cost to every rule. We are now going to explore several optimization techniques that
increase the overall performance of pattern matching, especially when dealing with a large
number of patterns.

The basis for our tests will be 114 SQL injection keywords, which I have retrieved from the
Core Rule Set v2.0.4. Here’s a few of them, just to give you an idea of what they look like:

sys.user_objects
sys.user_triggers
@@spid
msysaces
instr
sys.user_views
sys.tab
charindex
locate
sys.user_catalog
constraint_type
msysobjects
attnotnull
select
delete
... 99 more keywords

As you can see, some of them are likely to result with many false positives (locate, select,
delete, ...); however, the goal of those keywords is not necessarily to detect an SQL injection,
but rather to give you an indication based on which you could decide to perform further tests.

Rule per Keyword Approach
We’ll start with the naïve approach to implementing the keyword detection, using one rule
per keyword and arriving at exactly 114 rules. The performance of this approach will be the
baseline against which we will compare all other tests:

SecRule ARGS "@rx sys.user_objects"
SecRule ARGS "@rx sys.user_triggers"
SecRule ARGS "@rx @@spid"
... 111 more rules

Although this approach is not likely to result in great performance, it’s straightforward and
allows us to deal with each keyword individually. For example, if you determine that a keyword
is causing too many false positives in a particular location, you can use SecRuleRemoveById to
remove the entire rule. The ability to deal with false positives in this way is especially important
for third-party rules, where the ability to easily update from one release to another is very
important. You want to be able to tweak third-party rules without modifying the actual files.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Combined Regular Expression Pattern 195

Combined Regular Expression Pattern
To eliminate the per-rule overhead, we can combine all the keywords in a single regular ex-
pression pattern using alternation:

SecRule ARGS "(?i)(sys.user_objects|sys.user_triggers|@@spid|msysaces|instr|…
sys.user_views|sys.tab|charindex|locate|sys.user_catalog|constraint_type|…
msysobjects|attnotnull|select|sys.user_tables|sys.user_constraints|…
...15 lines of text omitted from the middle
dbms_java|benchmark|xp_regread|xp_regwrite)"

The single-rule approach is likely to give us a significant speed boost, but we’ve lost the ability
to suppress individual keywords. On the positive side, it’s fairly easy to locate a keyword in
the entire regular express pattern and remove it manually.

Optimized Regular Expression Pattern
Regular expression patterns are compiled into state machines. Our crude attempt at combin-
ing keywords is easy to understand and do, but it does not produce very efficient results. The
more keywords you have the more likely it is that they have a lot in common. If you can figure
out what it is that they have in common, you can write a regular expression pattern that is
very efficient. I did just that, and here’s the resulting regular expression:

SecRule ARGS "(?i-xsm:(?:s(?:ys(?:.(?:user_(?:(?:t(?:ab(?:_column|le)|rigger)|…
object|view)s|c(?:onstraints|atalog))|all_tables|tab)|(?:(?:process|tabl)e|…
... 13 lines of text omitted from the middle
[fs]null)|'(?:s(?:qloledb|a)|msdasql|dbo)'|p(?:g_(?:attribute|class)|rint)|…
(?:n?varcha|waitfo)r|@@(?:version|spid)|benchmark|having|locate|rownum))"

The result is almost an incomprehensible mess. You can probably make out the original key-
words in the text, but they’ve all been “melted” together. You’ll notice that alternation is still
used, but with deep nesting, combining the shared keyword bits. In addition, data capture
is disabled.

The increased pattern matching performance comes at a further maintenance cost. In addition
to not being able to work with individual keywords directly (the same problem as with our
earlier attempt at optimization), now it is not even possible to modify the one resulting regular
expression by hand.

Note
Although the combined regular expressions cannot be maintained by hand, nothing
says that manual maintenance is the only way. You can easily put together a script or
two to generate optimized regular expressions from a simple list of individual ones.
By doing that, you get the best of both worlds!

Property of Girish Motwani <kushalbooks@yahoo.co.in>

196 Chapter 10: Performance

Of course, I didn’t manually construct the heavily optimized regular expression. I used a
clever Perl module called Regexp::Assemble [http://search.cpan.org/~dland/Regexp-Assem-
ble-0.30/Assemble.pm], and followed the instructions written by Ofer Shezaf in a blog post
on the ModSecurity blog [http://blog.modsecurity.org/2007/06/optimizing-regu.html]. Ofer
pioneered the use of heavily optimized regular expressions in the first generation of the Core
Rules.

I used apt-get install libregexp-assemble-perl to install Regexp::Assemble on my Debian
box. In the blog post, Ofer provides the instructions for the installation on Windows, and
there’s even a Windows binary available for download.

A trivial script is needed to operate Regexp::Assemble:

#!/usr/bin/perl

use strict;
use Regexp::Assemble;

my $ra = Regexp::Assemble->new;

while (<>) {
 $ra->add($_);
}

print $ra->re . "\n";

You feed the script a list of keywords (one per line), and it spits back the optimized regular
expression:

$./optimize-regex.pl < sqli_keywords.dat
(?-xism:(?:s(?:ys(?:.(?:user_(?:(?:t(?:ab(?:_column|le)|rigger)
...and so on

Note
If you examine the beginning of the resulting pattern, you will notice that it disables
case-sensitive matching. (If you are not familiar with pattern compilation options,
head to the section called “Changing How Patterns Are Compiled”, in this chapter.)
The optimizing tool does not know whether your keywords are case-sensitive. If they
are not, you’ll need to manually enable case-insensitive matching, as I’ve done for
this same pattern in an earlier rule.

Parallel Pattern Matching
An alternative optimization technique is to use the parallel matching facilities of ModSecurity,
which use the Aho-Corasick algorithm to match all supplied keywords at once. I will use the

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://search.cpan.org/~dland/Regexp-Assemble-0.30/Assemble.pm
http://search.cpan.org/~dland/Regexp-Assemble-0.30/Assemble.pm
http://search.cpan.org/~dland/Regexp-Assemble-0.30/Assemble.pm
http://blog.modsecurity.org/2007/06/optimizing-regu.html
http://blog.modsecurity.org/2007/06/optimizing-regu.html
http://blog.modsecurity.org/2007/06/optimizing-regu.html

Test Results 197

@pmFromFile operator, which allows me to refer to the file in which the keywords are stored
(which is nice, because it keeps the configuration file neat and tidy):

SecRule ARGS "@pmFromFile sqli_keywords.dat"

Test Results
The testing results of the four pattern matching techniques can be seen in Table 10.2, “Perfor-
mance comparison of pattern-matching approaches”. The results are given in microseconds.
We got pretty much what we had expected, but there are some surprises. We draw the follow-
ing conclusions:

• The multi-rule approach carries a nonnegligible cost, even with requests with no para-
meter. It may take 1 microsecond to process a rule, but those microseconds add up.

• Parallel matching is very fast. You should therefor aim to use it whenever you can,
which in practice means whenever you have a large number of keywords and the ex-
pressiveness of regular expressions is not required.

• If you must use regular expressions, using optimized combinations may increase the
speed several-fold.

• Using a large number of regular expressions against large amounts of data (e.g., re-
sponse bodies) is not recommended. It will consume significant amounts of CPU pow-
er.

• Somewhat surprisingly, the one-rule-per-keyword approach produced better results
with a large amount of data than the optimized versions. That indicates that optimized
regular expressions are better for smaller amounts of data.

Table 10.2. Performance comparison of pattern-matching approaches

Approach GET POST Long POST

Rule (@rx) per keyword 114 7,752 7,895

Combined regular expression (@rx) 1 473 45,812

Optimized regular expression (@rx) 1 178 13,114

Parallel matching (@pm) 1 73 671

Summary
In the course of writing this chapter, I learned more about ModSecurity than ever before.
You see, I too was happy with the performance of ModSecurity and rarely had a need to look
deeper into the topic. But I always wondered what the situation was, and now we know.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

198 Chapter 10: Performance

The chapter that follows looks at content injection, which is a very interesting and innovative
feature that enables you to extend your inspection capabilities from the server side into your
users’ browsers.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

199

11 Content Injection
Content injection is an innovative security technique that allows you to inject arbitrary con-
tent into HTTP response bodies. The technique was designed to address the attacks that take
place in the browser itself, which is outside the reach of most server-side defenses.

With content injection, a server can reach out to inject dynamic content and code (JavaScript)
into responses, gaining in-browser inspection capabilities. The idea is that you first perform
your normal server-side inspection, after which you inject JavaScript into the HTTP response
to continue the inspection with full access to the browser’s internal state. This section will give
you a good overview of several useful and easy-to-use techniques based on content injection.

Note
Nothing says that content injection has to be used only for defense. There is a school
of thought that says that offense is the best defense. If you subscribe to that view, you
could use content injection to attack the attackers, injecting malware directly into
their browsers. Just make sure that you understand your legal position before you do
anything that might be crossing the line.

Writing Content Injection Rules
Content injection allows you to inject content, possibly on a per-response basis, either at the
beginning of a response or at the end. Injecting at the beginning is useful if you want to attempt
to prevent attacks. Injecting at the end is useful if you want to inspect the content of the page
and the internal browser state after all other JavaScript code has already been run.

To start, enable the injection feature using the SecContentInjection directive:

Enable content injection
SecContentInjection On

Note
Content injection does not require that you have SecResponseBodyAccess enabled.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

200 Chapter 11: Content Injection

In the next step, determine whether injection would make sense. Web servers process many
types of requests, and only some responses can be injected. You wouldn’t, for example, want
to inject anything into an image—it would end up being corrupted. To find out whether a re-
sponse is injectable, check its content type, which you will find in the RESPONSE_CONTENT_TYPE
variable, in phase 3. (You shouldn’t try to use RESPONSE_HEADERS:Content-Type, which may
not always contain the necessary information.)

I suggest that you use the following framework for all of your content injection rules:

SecContentInjection On

First check if we should inject anything
SecRule RESPONSE_CONTENT_TYPE !^text/html \
 phase:3,nolog,pass,skipAfter:999

... your content injection rules here

SecMarker 999

First, you check for the correct content type, jumping over all your content injection rules if
an incorrect type is used in a response. If you are going to inject into more than one type of
document (e.g., text/plain and text/html), then you are probably going to need different
rules, with different content for each type. In that case, just repeat the previous example frag-
ment, making sure to choose the content type correctly and to use a unique SecMarker value
in each group.

Finally, to inject content, use the append and prepend actions. The following example injects
a header and a footer into an HTML response:

SecAction phase:3,nolog,pass,prepend:'Header<hr>'
SecAction phase:3,nolog,pass,append:'<hr>Footer'

Note
The content injection facilities will not perform any output encoding, which means
that you must manually encode everything that you want injected. The prepend and
append actions do support variable expansion (as of ModSecurity 2.5.9) and make
it possible to inject dynamically generated content, but you must take care to never
inject any user-controlled content. Doing so would create a XSS vulnerability, right
there in your web application firewall! Inject only what you have 100% control over.

For testing purposes, you can also try this simple JavaScript code, which will write the URL
of the current page on the screen:

SecAction phase:3,nolog,pass,prepend:…
'<script>document.write(document.location)</script>'

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Communicating Back to the Server 201

So we’ve established that you can have your JavaScript code inside the browser. But what can
you do with this ability? Here are some ideas.

• Inspect request parameters, including the fragment identifier, which is normally not
sent to servers.

• Inspect browser state. For example, a popular technique used to assist in XSS attacks
is to store the payload in window names (property window.name). That field is out of
bounds to a server, but not to the injected JavaScript code.

• Inspect browser configuration; for example, look for vulnerable plug-ins.

• Inspect page state and structure (DOM) at the end of page execution.

• Redefine the built-in JavaScript functions to detect unusual activity patterns.

JavaScript is a fascinating language that is endlessly tweakable. Describing advanced JavaScript
attacks is out of the scope of this book, but if you want to go there, simply pick up the most
advanced JavaScript book you can find and use it as a starting point.

CRSF Defense Using Content Injection

A very imaginative use of the content injection feature is that devised by Ryan C. Barnett, the
ModSecurity Community Manager and author of the Core Rule Set. He established a way to
use content injection to defend vulnerable applications against cross-site request forgery (CSRF)
attacks, otherwise possible only through the modification of the source code of the vulnerable
applications. (If you are not familiar with CSRF, I suggest that you read through the CSRF entry
on Wikipedia [http://en.wikipedia.org/wiki/Cross-site_request_forgery].)

The usual way to defend against CSRF is to embed special tokens into application forms, and
accept only submits that contain the correct token values. CSRF requests faced with such defenses
always fail, because they have no way to “know” the correct token value.

Ryan’s approach is to use content injection to inject JavaScript, which is then used to modify all
page forms to add tokens where they wouldn’t normally exist. In the second part of the trick,
he would have ModSecurity rules inspect all POST requests to verify that they contain the correct
values. Brilliant!

For more information, look up Ryan’s Black Hat DC 2009 whitepaper WAF Virtual Patching
Challenge: Securing WebGoat with ModSecurity. The 26-page document contains many other
interesting techniques.

Communicating Back to the Server
When you detect a problem using JavaScript, you need to somehow communicate that fact
back to the server. The best way to do that is to get the browser to send a special request. The
simplest way to do that is by writing some HTML into the response:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

202 Chapter 11: Content Injection

document.write("<script src=/security-error.js><" + "/script>");

Note
The injected payload must never contain the characters </script> anywhere except
at the very end. If it does, then that’s where browsers will terminate the entire pay-
load, and probably even cause a JavaScript error. String concatenation, as used in the
previous example, is often used to deactivate the closing tag.

To the special request, add a rule that detects it and raises an alert in ModSecurity. While
you’re there, you might want to consider doing other things, such as cancelling the victim’s
application session. You might want to consider including an error code in the request (e.g., as
a parameter), which will help you in establishing exactly where the problem was. You should
also be prepared that this communication mechanism can be discovered and subverted by the
attacker. In that light, don’t use any information obtained from such requests for anything
apart from logging.

Interrupting Page Rendering
Perhaps you’ll decide that detection is not enough and will want to prevent in-browser attacks.
JavaScript does not offer a way to stop page rendering, but you can do the next best thing—
redirect the user someplace else using location.replace(). In my tests, the invocation has the
effect of effectively stopping rendering and moving elsewhere. For example:

location.replace("http://www.example.com/security-error.html");

The stopping of page rendering when location.replace() is invoked is a side effect and you
should generally not expect it to work across all browsers, or to continue to work in the
browsers it works in today. For example, some browsers may continue to process JavaScript
while another page is being loaded. You should assume that some attacks may get through.

If you choose to implement prevention in this way, don’t forget to put some user-friendly
explanation for the sudden redirection to another page. Your users will appreciate it. The
advantage of using prevention like this is that it also notifies you of the problem—whenever
someone accesses that special page, you will know that they have been attacked.

Using External JavaScript Code
In the current implementation of content injection, you are limited to the content you can put
in a parameter to the append and prepend actions. In particular, you won’t be able to inject any
non-printable characters. You can escape a single quote with a backslash, but that’s the only
escape option ModSecurity supports at present. If you do run into trouble, you can always
store the JavaScript code in a separate file and just inject a link to it.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Communicating with Users 203

If you can place a file onto the root of the web site that is being protected, use this:

SecAction "phase:3,nolog,pass,prepend:'<script src=/ids.js></script>'"

If you have several web sites and you’d like to use one file for all of them, use an absolute
address:

SecAction "phase:3,nolog,pass,prepend:…
'<script src=https://www.example.com/ids.js></script>'"

Finally, if you need to construct the address dynamically, you can do that by injecting
JavaScript that will generate the HTML code that is needed to include the external JavaScript:

SecAction "phase:3,nolog,pass,prepend:…
'<script>document.write(unescape(\"<script src=\'\" + document.location.protocol …
+ \"//www.example.com/ids.js\'%3c/script>\"));</script>'"

Several aspects of this rule need explaining:

1. Use document.write() to output HTML to the document body.

2. Make sure to escape all single and double quotes in the code.

3. In the previous example, I used URL encoding (converting the opening angle brack-
et to %3c) in combination with unescape() to deactivate the closing script tag. This ap-
proach can also be used if you need special characters in JavaScript (and you cannot
write them directly because of ModSecurity’s poor escape syntax).

4. The code uses the document.location.protocol property, which will be http: for
plain-text connections and https: for encrypted connections, to construct an URL
that will correspond to the security level of the including document. That will help
with the performance on non-SSL sites.

Communicating with Users
Another interesting application of content injection is “talking” to the application users. Ages
ago I wrote some code, practically as a party trick, that would detect access using vulnerability
scanners (e.g., Paros Proxy) and send a message back that we don’t like being probed.

Such a rule can be as simple as this example:

SecRule REQUEST_HEADERS:User-Agent Paros \
 "phase:3,pass,prepend:'Use of Paros Proxy is strictly forbidden'"

If your site uses sessions and you’ve configured ModSecurity to track them, you can send per-
session messages that expire after a period of time. I will show you how to do that, using an
example that detects the word attack anywhere in request parameters (let’s pretend that we
are detecting an SQL injection attack), then sets a message that will be displayed to the same

Property of Girish Motwani <kushalbooks@yahoo.co.in>

204 Chapter 11: Content Injection

session for 60 seconds (even in the requests that do not contain the attack). The example
consists of only two rules.

The first rule is used to trigger the message:

The following rule triggers a message. Session must have been
established (using setsid) beforehand, otherwise the execution
of this rule will cause an error.
SecRule ARGS attack "nolog,pass,msg:'Detected SQL Injection',\
 setvar:SESSION.message_flag=1,\
 expirevar:SESSION.message_flag=60,\
 setvar:'SESSION.message=SQL Injection is lame'"

The detection itself is trivial, but the rest needs an explanation:

1. The first setvar action (setvar:SESSION.message_flag=1) creates a per-session flag
that is used to indicate that a message exists.

2. The expirevar action (expirevar:SESSION.message_flag=60) is used to delete the
SESSION.message_flag variable after 60 seconds.

3. The second setvar action (setvar:'SESSION.message=SQL Injection is lame')
defines the message.

Another rule is used to detect the presence of SESSION.message_flag and display the message
stored in SESSION.message:

The following rule displays the message. As before, the prepend action
must be executed only if the response content type is right.
SecRule SESSION.message_flag "@eq 1" \
 phase:3,nolog,pass,prepend:%{SESSION.message}

When, after 60 seconds, the expirevar statement from the first rule kicks in, the
SESSION.message_flag variable will be deleted and the message will go away.

Summary
To me, content injection is a fascinating ability of ModSecurity, because you get to move into
the ever-complex world of JavaScript. You get to extend your virtual hand into every single
user’s browser, and have a look at what they know. It’s all right to look, by the way, because
you will have access to only the pages that come from your own sites. Everything else will be
off-limits.

In the next chapter, I’ll cover a topic that’s possibly even more interesting than the one covered
here—the ability to write rules in Lua, a proper programming language.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

205

12 Writing Rules in Lua
The ModSecurity Rule Language is relatively easy to use, but it is fairly limited. After all, the
directives have to obey the Apache configuration syntax, so there is only so much we can
do within those boundaries. I like to think that you can use the rule language to get 80%
of your tasks done, and quickly too: common things are simple to do, complex things are
possible. At some point, however, the rule language stops being an appropriate tool for the
task, and you need to look elsewhere. Starting with ModSecurity 2.5 you can write rules in
Lua [http://www.lua.org], a fast and memory-efficient scripting language. These attributes
made it very popular with game programmers, who are always trying to get that extra ounce
of performance.

The advantage of Lua is that it is a proper programming language, which means that you
are limited only by your programming skills. The disadvantage, as you might expect, is a
performance penalty. Some of that penalty comes from the fact that Lua scripts need to be
interpreted at runtime, and some because the current implementation in ModSecurity is not
as efficient as it could be. Having said that, I think the performance is adequate in most cases.

There are two ways in which Lua can be used to enhance your rule sets. First, you can write
detection rules in it. Second, you can write scripts that are executed on a rule match. The
remainder of this section explains both of these features.

Tip
You can improve the performance of Lua in ModSecurity by enabling LuaJIT, which
is a very fast just-in-time compiler for Lua. The process, which requires only one
change to your Apache configuration, is described in this blog post from Josh
Zlatin [http://www.purehacking.com/blogs/josh-zlatin/speeding-up-lua-script-exe-
cution-in-modsecurity].

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.lua.org
http://www.lua.org
http://www.purehacking.com/blogs/josh-zlatin/speeding-up-lua-script-execution-in-modsecurity
http://www.purehacking.com/blogs/josh-zlatin/speeding-up-lua-script-execution-in-modsecurity
http://www.purehacking.com/blogs/josh-zlatin/speeding-up-lua-script-execution-in-modsecurity
http://www.purehacking.com/blogs/josh-zlatin/speeding-up-lua-script-execution-in-modsecurity

206 Chapter 12: Writing Rules in Lua

Rule Language Integration
Although the previous section made it sound like Lua rules are separate from the rule lan-
guage, that’s not actually true. In ModSecurity, Lua is implemented as an rule language ex-
tension, via the SecRuleScript directive. For example, this is how you run a Lua script:

SecRuleScript /path/to/script.lua phase:2,log,deny

Comparing to the SecRule directive, the variables and the operators are gone. They are re-
placed with a single parameter, which is the location of the Lua script you wish to run. That
means that the script will choose which variables it wishes to inspect and in which order. The
action list is still there, though. You can see that the rule in the previous example runs in phase
2, and that it logs and blocks on a match.

Lua Rules Skeleton
Every Lua rule needs to have an entry point that ModSecurity can find—the main function.
This is what the simplest Lua rule looks like:

function main()
 -- Never match
 return nil;
end

As you suspect, the previous rule does not do much. It only returns nil, which means that
there is no match. For a Lua rule to match, it needs to return a message:

function main()
 -- Always match
 return "Error message";
end

The beauty of the way Lua is integrated with ModSecurity is that once you return an error
message, the rule language takes over and processes the action list. Thus, with Lua rules, you
still get to use what you already know. For example, you provide all the metadata information
for Lua rules in the exact same way as you do for normal rules:

SecRuleScript /path/to/script.lua \
 phase:2,log,deny,id:1001,rev:1,severity:3

Whatever you can do with a SecRule directive, you can do with SecRuleScript.

Accessing Variables
Once inside a Lua rule, the first thing you will need to do is access some variables. The fol-
lowing example retrieves two variables from ModSecurity:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Accessing Variables 207

function main()
 -- Retrieve remote IP address
 local remote_addr = m.getvar("REMOTE_ADDR");

 -- Retrieve username
 local username = m.getvar("ARGS.username", {"lowercase"});

 if ((username == "admin") and (remote_addr ~= "192.168.1.1")) then
 return "Admin sign-in not allowed from IP address: " .. remote_addr;
 end

 -- No match
 return nil;
end

A call to the m.getvar() function will retrieve the variable named in the first parameter. In the
example, the value of REMOTE_ADDR is retrieved and placed into the Lua variable remote_addr.

The function has an optional second parameter. If used, it must contain a list of transforma-
tion functions that will be applied to the variable before it is returned to Lua. In the exam-
ple, the value of ARGS.username is retrieved from ModSecurity, passed through the lowercase
transformation function, and placed into the Lua variable username.

It is also possible to retrieve more than one variable at once, but for that you use the
m.getvars() function (note the additional s in the name). The following example retrieves
all request parameters, then examines them one at a time.

function main()
 -- Retrieve all parameters
 local vars = m.getvars("ARGS", {"lowercase", "htmlEntityDecode"});

 -- Examine all variables
 for i = 1, #vars do
 -- Examine one value
 if (string.find(vars[i].value, "<script")) then
 return ("Suspected XSS in variable: " .. vars[i].name .. ".");
 end
 end

 -- Nothing wrong found
 return nil;
end

The m.getvars() function works differently. It does not return just the value of the request-
ed variable. Instead, it returns an object with two members: name, which contains the name
of the variable, and value, which contains the corresponding value. The previous example
demonstrates how both are used.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

208 Chapter 12: Writing Rules in Lua

Setting Variables
Starting with ModSecurity 2.5.13, you can modify or add transaction variables from within a
Lua script using the m.setvar() function. The following example will take an existing variable
and increment it by 1:

function main()
 -- Retrieve parameter
 local var = m.getvar("TX.test");

 var = var + 1;

 m.setvar("TX.test", var);

 -- No match
 return nil;
end

With this addition, you can set variables from Lua in two ways. The old way was to use a
setvar action triggered by a Lua script returning with a match. The new way enables you to
set variables directly from the script, even if there is no match.

Logging
Sometimes a Lua rule will not be working as you expect, but you won’t have any clues as to
why. You can troubleshoot your scripts by emitting debug log messages, using the m.log()
function.

function main()
 -- Log something
 m.log(4, "Hello World from Lua!");

 -- Never match
 return nil;
end

The m.log() function takes two parameters, the first of which is the desired log level (1–9)
and the second is the desired message.

Lua Actions
With the addition of Lua, the exec action was extended to support Lua natively. Normally, you
supply the exec action with a path to an external script and ModSecurity executes that script
in a separate process. If the script path ends with .lua, however, ModSecurity will process
the script using the embedded Lua interpreter. This approach not only achieves better per-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 209

formance (no need to start a new process), but also gives the Lua script access to the current
transaction context.

SecRule ARGS test phase:2,log,pass,exec:/path/to/script.lua

A Lua script called from exec must define the same entry point as all other Lua scripts. There
is no need to return anything from the main() function.

function main()
 -- Log something
 m.log(4, "Lua executed in exec!");
end

Now, the example looks deceptively simple—so much that you may wonder what use could
Lua possibly have. The answer is that you can do from Lua pretty much anything you want.
You not only get the programming language and the standard Lua libraries, but you also get
access to a number of extensions that take care of filesystem access, sockets, database access,
and so on. And, because Lua scripts executed in this way have access to the transaction context
and the persistent storage, what you have is a seamless scripting extension of ModSecurity.

Summary
This chapter is very short, but the topic is important enough to warrant its own chapter.
Lua is what you will turn to when implementing a particular functionality using just the rule
language fails, or when the resulting rules are too difficult to maintain. The way in which Lua
is currently used in ModSecurity just scratches the surface of what can be done, so let’s hope
that future versions will continue to extend in this direction.

In the next chapter, we will focus on XML processing. The XML features of ModSecurity are
not used by all installations, but those that do use them find the capabilities crucial.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

210

Property of Girish Motwani <kushalbooks@yahoo.co.in>

211

13 Handling XML
ModSecurity has very good XML support, which is made possible by a tight integration with
libxml2 [http://xmlsoft.org]. Libxml2 is one of the fastest XML libraries available, making it
very suitable for the performance-sensitive work in ModSecurity. The integration is seamless,
effectively making XML payloads just another source of data to which you can apply your
usual rule-writing techniques. The following functionality is supported:

• XML parsing

• DTD validation

• XML Schema validation

• XPath expressions

Once upon a time it was possible to leave out XML functionality when compiling ModSecu-
rity, but newer versions do not support that any more. You should reasonably expect for the
XML processing features to be available in ModSecurity.

Note
You don’t want to use ModSecurity as an XML testing tool, because the entire cycle
(write rules, then send payload, then analyze debug log) is very slow. You should
instead use an XML validation tool. Probably the best option is xmllint, because it
is based on the same library used by ModSecurity.

The examples used in this section were adapted from the sample written by Steve Traut for
the XMLBeans project [http://xmlbeans.apache.org].

XML Parsing
Although ModSecurity is capable of parsing XML, it won’t attempt any parsing by default.
XML parsing is very resource-intensive and many installations do not need it. Even when they
do, recognizing that XML parsing is needed is not something that can be done in a way that
works for everyone. Other request body processors (URLENCODED and MULTIPART) rely on using

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://xmlsoft.org
http://xmlsoft.org
http://xmlbeans.apache.org
http://xmlbeans.apache.org

212 Chapter 13: Handling XML

a standardized content type for detection when they are needed, but there is no such thing
for XML.

To enable XML parsing, you’ll have to go through the manual request body processor activa-
tion. There are two things you will need to do:

1. Analyze request to determine whether XML parsing is needed. Most requests won’t
need XML parsing enabled. Figuring out which do will depend on the exact content
type used by your application. In many cases, the Content-Type header will contain
text/xml, and that is what I will assume in my examples.

2. Instruct ModSecurity to use the XML request body processor for the requests that do
need it.

For example:

Detect XML payloads and activate XML parsing
SecRule REQUEST_HEADERS:Content-Type "@rx ^text/xml$" \
 phase:1,t:none,t:lowercase,nolog,pass,ctl:requestBodyProcessor=XML

The example uses the @rx operator, but a straightforward @streq would have worked as well.
Notice how I used t:lowercase to ensure that the comparison is case-insensitive (which is
always appropriate when working with Content-Type).

It is important to always use phase 1 (REQUEST_HEADERS) when determining request body
processors. Request body parsing is done right after phase 1 completes and the processor
choice must be made before then.

When you’re writing ModSecurity rules, you usually have to test a lot, and when you’re work-
ing with XML, you will have to test even more. For my testing, I use the little utility script that
was distributed with ModSecurity 1.x, called run-test.pl. Although this script is no longer
distributed with ModSecurity, you can still get it directly from the repository:

http://mod-security.svn.sourceforge.net/viewvc/mod-security/m1/trunk/util/…
run-test.pl?revision=6

With this script in hand, you can construct and send raw HTTP requests to your web server
to test your rules. For example, I used the following file (which I named xml.t) to test XML
parsing:

POST / HTTP/1.0
Content-Type: text/xml
Content-Length: 633

<employees>
 <employee>
 <name>Fred Jones</name>
 <address location="home">

Property of Girish Motwani <kushalbooks@yahoo.co.in>

XML Parsing 213

 <street>999 Aurora Ave.</street>
 <city>Seattle</city>
 <state>WA</state>
 <zip>98115</zip>
 </address>
 <address location="work">
 <street>2022 152nd Avenue NE</street>
 <city>Redmond</city>
 <state>WA</state>
 <zip>98052</zip>
 </address>
 <phone location="work">(425)555-0100</phone>
 <phone location="home">(206)555-0101</phone>
 <phone location="mobile">(206)555-0102</phone>
 </employee>
</employees>

To send a file to a web server, you specify the server information (in the following example,
both the IP address and the port) and the file you wish to send. I also often use the debug
switch (-d), which makes the tool output all traffic to standard output:

./run-test.pl 192.168.3.100:8080 -d xml.t

Let’s see how ModSecurity processed this test request. Following is the debug log output at
level 8 (which is shorter than the level 9 output, but equally meaningful in this case).

First, the rule ran in phase 1 to check the value of the Content-Type request header. It matched,
causing the ctl action to set the request body processor to XML:

[4] Recipe: Invoking rule 8de36c8; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "518"].
[5] Rule 8de36c8: SecRule "REQUEST_HEADERS:Content-Type" "@rx ^text/xml$" …
"phase:1,auditlog,t:none,t:lowercase,nolog,pass,ctl:requestBodyProcessor=XML"
[4] Transformation completed in 24 usec.
[4] Executing operator "rx" with param "^text/xml$" against …
REQUEST_HEADERS:Content-Type.
[4] Operator completed in 54 usec.
[4] Ctl: Set requestBodyProcessor to XML.
[4] Warning. Pattern match "^text/xml$" at REQUEST_HEADERS:Content-Type. …
[file "/home/ivanr/apache/conf/httpd.conf"] [line "518"]
[4] Rule returned 1.

Then we see the second phase starting and ModSecurity reading the request body and for-
warding it to the XML parser:

[4] Second phase starting (dcfg 8dfee38).
[4] Input filter: Reading request body.
[4] XML: Initialising parser.
[4] XML: Parsing complete (well_formed 1).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

214 Chapter 13: Handling XML

The last line indicates the completion of XML parsing. It also indicates that the XML was well
formed. If it weren’t, the message would display a 0 instead of the 1. This message makes a
good point, actually: you need to not only enable XML parsing, but also verify that it was
successful.

To verify how XML parsing went in a rule, use the REQBODY_PROCESSOR_ERROR variable, as you
do with all request body processors. I covered this topic in detail in the section called “Han-
dling Processing Errors ” in Chapter 3. If you follow my advice from that section and use the
rule to check for request body processors errors (also reproduced here), you will be covered
for XML parsing errors, too:

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).
SecRule REQBODY_PROCESSOR_ERROR "!@eq 0" \
 "phase:2,t:none,log,block,msg:'Failed to parse request body: …
%{REQBODY_PROCESSOR_ERROR_MSG}'"

We can easily check whether that is correct. Make a copy of xml.t, calling the new file xml-
invalid.t, then replace one of the angle brackets with a space. (Replacing a character will
ensure that the payload length remains the same. If you add or remove a character, you will
need to update the Content-Length request header to reflect the change.) When you send such
modified file to the server, the debug log will report the problem:

[4] Second phase starting (dcfg 8df6e68).
[4] Input filter: Reading request body.
[4] XML: Initialising parser.
[4] XML: Parsing complete (well_formed 0).
[2] XML parser error: XML: Failed parsing document.

Then, a few lines down in the log file, you will see the second rule triggering:

[4] Recipe: Invoking rule 8e5e538; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "522"].
[5] Rule 8e5e538: SecRule "REQBODY_PROCESSOR_ERROR" "!@eq 0" …
"phase:2,status:500,t:none,log,block,msg:'Failed to parse request body: …
%{REQBODY_PROCESSOR_ERROR_MSG}'"
[4] Transformation completed in 3 usec.
[4] Executing operator "!eq" with param "0" against …
REQBODY_PROCESSOR_ERROR.
[4] Operator completed in 8 usec.
[4] Rule returned 1.
[1] Access denied with code 500 (phase 2). Match of "eq 0" against …
"REQBODY_PROCESSOR_ERROR" required. [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "522"] [msg "Failed to parse request body: XML parser error: XML: Failed …
parsing document."]

Property of Girish Motwani <kushalbooks@yahoo.co.in>

DTD Validation 215

Note
Just because an XML payload is not well-formed does not mean that your subse-
quent rules are not going to run. They will run, but they will have access to only
a partial XML tree, created until the parsing error was encountered. What this tree
will contain depends on the nature of the error. If you choose not to block on a
request body processor failure, then you need to at least ensure that you don’t re-
ly on the results of your subsequent XML rules. For example, you could evaluate
REQBODY_PROCESSOR_ERROR again and skip over them. If you don’t mind working with
a partial XML payload, or even if that’s desired, then you don’t need to do anything.

DTD Validation
Sometimes you will be happy to work with a partial (invalid) XML payload, but some other
times you will want to perform further validation. The validation requires one further rule,
in which you specify the type of validation and the file that contains the rules:

SecRule XML "@validateDTD /path/to/apache2/conf/xml.dtd" \
 "phase:2,log,block,msg:'Failed to validate XML payload against DTD'"

The file xml.dtd, which contains a DTD for the XML payload used earlier in this section,
contains the following:

<!ELEMENT phone (#PCDATA)>
<!ATTLIST phone location CDATA #REQUIRED>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT address (street, city, state, zip)>
<!ATTLIST address location CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT employee (name, address+, phone+)>
<!ELEMENT employees (employee)>

When you submit the same XML payload as before, you get:

[4] Recipe: Invoking rule 8265d30; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "525"].
[5] Rule 8265d30: SecRule "XML" "@validateDTD /home/ivanr/apache/conf/xml.dtd" …
"phase:2,status:500,log,block,msg:'Failed to validate …
XML payload against DTD'"
[4] Transformation completed in 1 usec.
[4] Executing operator "validateDTD" with param "/home/ivanr/apache/conf/xml.dtd" …
against XML.
[9] Target value: "[XML document tree]"
[4] XML: Successfully validated payload against DTD: /home/ivanr/apache/conf/xml.dtd
[4] Operator completed in 612 usec.
[4] Rule returned 0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

216 Chapter 13: Handling XML

Note
The @validateDTD operator returns a match if it fails to validate, and no match if
everything is all right.

When validation fails, the error messages from libxml2 will be recorded as notices (level 3),
which means that they will appear in the debug log, the audit log, and the Apache error log.
For example, when I changed the payload to transmit the employee name with the first name
and the last name separately:

<firstname>Fred</firstname>
<lastname>Jones</lastname>

I got three libxml2 errors in return:

[3] Element employee content does not follow the DTD, expecting (name , …
address+ , phone+), got (firstname lastname address address phone phone phone)
[3] No declaration for element firstname
[3] No declaration for element lastname

And there was also one fatal error from the validation rule itself:

[1] Access denied with code 500 (phase 2). XML: DTD validation failed. [file …
"/home/ivanr/apache/conf/httpd.conf"] [line "525"] [msg "Failed to …
validate XML payload against DTD"]

Note
Before version 2.6, ModSecurity would fail silently when a rule failed (see ticket
MODSEC-12 for more information). As a result, the incorrect DTD path would pre-
vent validation from working, but there wouldn’t be any indications in the logs that
anything was wrong. Even if you are using a newer version of ModSecurity and this
problem does not apply, you should still perform thorough testing during rule de-
velopment or, even better, build a set of regression tests to check whether the rules
continue to perform as desired.

XML Schema Validation
The XML Schema validation rule is functionally identical to that used for DTD validation:

SecRule XML "@validateSchema /path/to/apache2/conf/xml.xsd" \
 "phase:2,log,block,msg:'Failed to validate XML payload against schema'"

XML Schemas allow for much stricter validation, but the rule files are much more complicat-
ed. Here is the XML Schema equivalent of the DTD used in the previous section:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

XML Namespaces 217

 elementFormDefault="qualified"
 targetNamespace="http://xmlbeans.apache.org/samples/xquery/employees"
 xmlns="http://xmlbeans.apache.org/samples/xquery/employees">
 <xs:element name="employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="employee" type="employeeType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="employeeType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="addressType" maxOccurs="unbounded"/>
 <xs:element name="phone" type="phoneType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="addressType">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:NCName"/>
 <xs:element name="state" type="xs:NCName"/>
 <xs:element name="zip" type="xs:integer"/>
 </xs:sequence>
 <xs:attribute name="location" type="xs:NCName" use="required"/>
 </xs:complexType>
 <xs:complexType name="phoneType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="location" type="xs:NCName" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

Libxml2, the underlying XML library used by ModSecurity, is known to not fully implement
the XML Schema standards. You may encounter validation problems that are not a result of a
problem in a request, but a result of the incomplete XML Schema implementation in libxml2.
In that case, your best bet is to try to upgrade the library to a newer version (ModSecurity
will use the same library version as used by your operating system). If that does not help, try
seeking help on the libxml2 users mailing list.

XML Namespaces
Initially, XML was simple and easy to understand, like the one example I’ve used many times in
this chapter. As it gained in popularity, however, people decided that they wanted to combine
XML documents of different types and needed a way to distinguish which elements belong to

Property of Girish Motwani <kushalbooks@yahoo.co.in>

218 Chapter 13: Handling XML

which types. Thus XML namespaces were born. You’ve already seen a namespace in the one
XML Schema we used so far, but that document used only one namespace.

To demonstrate how namespaces work, I have reworked the original example to split it into
two namespaces—one for the employees element and the other for the address element:

<employees xmlns="http://www.example.org/employees">
 <employee>
 <name>Fred Jones</name>
 <a:address location="home" xmlns:a="http://www.example.org/address">
 <a:street>999 Aurora Ave.</a:street>
 <a:city>Seattle</a:city>
 <a:state>WA</a:state>
 <a:zip>98115</a:zip>
 </a:address>
 <a:address location="work" xmlns:a="http://www.example.org/address">
 <a:street>2022 152nd Avenue NE</a:street>
 <a:city>Redmond</a:city>
 <a:state>WA</a:state>
 <a:zip>98052</a:zip>
 </a:address>
 <phone location="work">(425)555-0100</phone>
 <phone location="home">(206)555-0101</phone>
 <phone location="mobile">(206)555-0102</phone>
 </employee>
</employees>

To use a namespace, choose a prefix (it can be anything) and associate it with a name-
space URI. In the previous example, the prefix is a (nice and short) and the URI is http://
www.example.org/address (it’s not necessary for the URI to work; its role is just to serve as
a unique identifier). Once a namespace has been introduced, you need to rewrite all the tags
that belong to it to use the prefix.

Of course, the original XML Schema we used for validation won’t work any more. The as-
sumption, with the new XML payload, is that two schemas are needed. The address schema
(xml-address.xsd) defines the rules only for addresses:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://www.example.org/address"
 xmlns="http://www.example.org/address">

 <xs:element name="address" type="addressType"/>

 <xs:complexType name="addressType">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:NCName"/>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

XML Namespaces 219

 <xs:element name="state" type="xs:NCName"/>
 <xs:element name="zip" type="xs:integer"/>
 </xs:sequence>
 <xs:attribute name="location" type="xs:NCName" use="required"/>
 </xs:complexType>

 <xs:complexType name="phoneType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="location" type="xs:NCName" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

</xs:schema>

The employees schema (xml-employees.xsd), defines the rules for everything else:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://xmlbeans.apache.org/samples/xquery/employees"
 xmlns="http://xmlbeans.apache.org/samples/xquery/employees"
 xmlns:a="http://www.example.org/address">

 <xs:import namespace="http://www.example.org/address"
 schemaLocation="xml-address.xsd"/>

 <xs:element name="employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="employee" type="employeeType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="employeeType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element ref="a:address" maxOccurs="unbounded"/>
 <xs:element name="phone" type="phoneType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="phoneType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="location" type="xs:NCName" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

220 Chapter 13: Handling XML

Notice how this second schema uses the XML Schema import facility to refer to xml-
address.xsd, and then uses the address element by reference.

When you need to validate a document that uses multiple schemas, like in the previous exam-
ple, the parameter that you supply to @validateSchema must be the path to the main schema.
You should also place all dependent schemas in the same directory as the main one, which
will enable libxml2 to find them.

The validation rule is the same as before:

SecRule XML "@validateSchema /path/to/apache2/conf/xml-employees.xsd" \
 "phase:2,log,block,msg:'Failed to validate XML payload against schema'"

If the validation fails, you’ll get the following information in your debug log:

[4] Element '{http://www.w3.org/2001/XMLSchema}import': Failed to locate a schema …
at location '/path/to/apache2/conf/xml-address.xsd'. Skipping the import.
[3] Element '{http://www.w3.org/2001/XMLSchema}element', attribute 'ref': The …
QName value '{http://www.example.org/address}address' does not resolve to a(n) …
element declaration.
[4] Operator completed in 940 usec.
[4] Operator error: XML: Failed to load Schema: /path/to/apache2/conf/…
xml-address.xsd
[4] Rule returned -1.
[1] Rule processing failed.

XPath Expressions
XML Path Language (XPath) is a language for addressing parts of an XML document. The
addressing is done by writing XPath expressions, which are very powerful and very easy to
use. I’ve compiled several examples in Table 13.1, “XPath expression examples”, but if you
have never worked with XPath expressions before, I recommend that you go through this very
nice tutorial on zvon.org [http://www.zvon.org/xxl/XPathTutorial/].

Table 13.1. XPath expression examples

XPath expression Description

/ Root element

/employees/employee All employees

//address An address, under any parent element

//* All elements in payload

/employees/employee/address[2] The second employee address

//phone[@location='work'] All work phone numbers

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.zvon.org/xxl/XPathTutorial/
http://www.zvon.org/xxl/XPathTutorial/
http://www.zvon.org/xxl/XPathTutorial/

XPath Expressions 221

XPath expressions can be used only against the XML collection, and in phase 2 (REQUEST_BODY)
and later. For example:

SecRule XML:/employees/employee/name/text() "!^[a-zA-Z]{3,33}$" \
 "phase:2,deny,msg:'Invalid employee name'"

Unless you’ve worked with XPath expressions before, the results may not always be what you
expect. Some XPath expressions will give you tidy results. For example, the one used in the
previous example will return Fred Jones. But that happens only when you select a simple
element (one that does not have any children). If the element you select has children, you get
back everything they contain too, excluding the markup.

Try this, for example:

Get the complete second employee address
SecRule XML:/employees/employee/address[2] TEST \
 "phase:2,deny"

The address fragment in the XML payload contains the following text (notice the whitespace,
which I left the same as in the original payload):

 <address location="work">
 <street>2022 152nd Avenue NE</street>
 <city>Redmond</city>
 <state>WA</state>
 <zip>98052</zip>
 </address>

The debug log reveals what was used for matching:

[4] Recipe: Invoking rule 978d260; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "565"].
[5] Rule 978d260: SecRule "XML:/employees/employee/address[2]" "@rx TEST" …
"phase:2,log,auditlog,deny"
[4] Expanded "XML:/employees/employee/address[2]" to "XML|XML".
[4] Transformation completed in 2 usec.
[4] Executing operator "rx" with param "TEST" against …
XML:/employees/employee/address[2].
[9] Target value: "\n 2022 152nd Avenue NE\n Redmond\n …
 WA\n 98052\n "

You can see that the whitespace is all there, including the newline characters.

As a rule of thumb, when working with XML, you should restrict yourself to the analysis of
specific fields. Bulk analysis (for example, using //*, which returns all elements in an XML
payload) is just not going to be very effective, because even smaller payloads will be broken
into dozens, and larger ones will be broken into possibly hundreds and thousands of small
pieces. The performance of bulk XML matching is likely to be very bad. When the //* expres-
sion is used with our short XML example, it creates 16 variables.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

222 Chapter 13: Handling XML

XPath and Namespaces
Once you move away from simple XML documents to those using namespaces, your XPath
expressions might stop working. For example, we could have used this “clean” XPath expres-
sion to validate ZIP codes in the first XML example:

SecRule XML://address/zip !^\d+$ \
 "phase:2,deny,msg:'Invalid ZIP code'"

To get the rule working with an XML document that uses prefixes, like the second XML ex-
ample, you could try to modify the XPath the expression to include the prefixes, but that will
just cause XPath evaluation to fail, because libxml2 will try to match the prefix to a name-
space, but won’t know how. You will get XML: Unable to evaluate xpath expression in the
debug log. Even if libxml2 didn’t complain, this approach wouldn’t work, because the choice
of prefix is in the hands of the request sender. You don’t get to control it on the server.

The solution is to use prefixes in XPath expressions, but also tell libxml2 about the namespace,
using the xmlns action:

SecRule XML://a:address/a:zip !^\d+$ \
 "phase:2,deny,msg:'Invalid ZIP code',xmlns:a=http://www.example.org/address"

This example will work as it would in the original example, returning two ZIP codes. It will
even work if the sender chooses an entirely different prefix.

XML Inspection Framework
The validation examples so far all assumed one validation per request, but an average applica-
tion will have many entry points, with a different set of rules needed for each. In this section,
I sketch a framework that you can use whenever you need to deal with XML in ModSecurity.

Establish the baseline for all XML entry points
<Location /api/>
 # Is the Content-Type correct?
 SecRule REQUEST_HEADERS:Content-Type !^text/xml$ \
 "phase:1,t:lowercase,deny,msg:'Invalid Content-Type for XML API'"

 # Activate XML parsing
 SecAction phase:1,t:lowercase,nolog,pass,ctl:requestBodyProcessor=XML

 # Was the payload successfully parsed?
 SecRule REQBODY_PROCESSOR_ERROR "!@eq 0" \
 "phase:2,t:none,log,block,msg:'Failed to parse request body: …
%{REQBODY_PROCESSOR_ERROR_MSG}'"

 # By default, we assume that XML validation did not take place

Property of Girish Motwani <kushalbooks@yahoo.co.in>

XML Inspection Framework 223

 SecAction phase:2,nolog,pass,setvar:TX.xml_validated=0
</Location>

Entry point One
<Location /api/entryPointOne.php>
 # Validate payload first
 SecRule XML "@validateDTD /path/to/conf/entryPointOne.dtd" \
 "phase:2,deny,msg:'Failed to validate XML against entryPointOne.dtd'"

 # Restrict employee name to known good characters only
 SecRule XML:/employees/employee/name/text() !^[a-zA-Z]{3,33}$ \
 "phase:2,deny,msg:'Invalid employee name'"

 # Validation was successful
 SecAction phase:2,nolog,pass,setvar:TX.xml_validated
</Location>

Entry point Two
<Location /api/entryPointTwo.php>
 # Validate payload first
 SecRule XML "@validateDTD /path/to/conf/entryPointTwo.dtd" \
 "phase:2,deny,msg:'Failed to validate XML against entryPointTwo.dtd'"

 # Implement additional restrictions
 # ...

 # Validation was successful
 SecAction phase:2,nolog,pass,setvar:TX.xml_validated
</Location>

Finally, verify that the entry point was valid
<Location /api/>
 # The xml_validated flag will only be set after a
 # successful validation
 SecRule TX:xml_validated "!@eq 1" \
 "phase:2,deny,msg:'Invalid API entry point'"
</Location>

With this example framework, we achieve the following:

1. There is first one <Location> section where we establish the baseline for all XML entry
points. It is here that we activate XML parsing, but also reject all requests that are not
XML. The assumption is that the /api/ folder contains only XML entry points. This
assumption is usually valid, as API calls do not need any accompanying files (such as
embedded images, stylesheet files, and so on).

2. With a further one <Location> section per entry point, we ensure that we apply the
correct validation rules to each entry point, followed by the per-entry point rules.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

224 Chapter 13: Handling XML

3. We finalize the XML rules by adding another global <Location> section, where we
use one rule that checks whether validation was successfully completed. This final
check is needed in case a request specifies an unlisted entry point, in which case the
xml_validated flag will be 0 (set in the first global section).

Note
Remember that configuration merging for the <Location> directive works in the
same order in which the sections appear in the configuration file. Thus, the rules will
be processed in the way they appear in the configuration too. If you are not famil-
iar with Apache’s configuration merging, there’s a refresher available in the section
called “Apache Configuration Syntax” in Chapter 7.

With XML rules, as with all other rules, the best approach is to use whitelisting, or positive
security. In this approach you look at every single bit of data you accept and check that it is
correct. You don’t try to discover “bad” characters (that would be negative security, or black-
listing). DTD validation is generally not powerful enough, but you may be able to use XML
Schemas as a pretty good validation mechanism. Then, if there are parts that you cannot cover
with schemas, you should use custom XPath expression as the last line of validation.

Summary
Being able to properly process XML is always important, especially now that so many web ap-
plications are adopting XML-based APIs. In ModSecurity, you will generally find everything
you need to parse, validate, and inspect XML in a meaningful way. If you find certain parts
of the XML support difficult to work with, that’s probably not because of ModSecurity, but
because the XML world continues to increase in complexity. No effort on part of ModSecurity
developers can make that go away.

There is only one chapter left in this book, and it will teach you how to extend ModSecurity
by writing native code, which is something that you may need to do when you reach the edges
of ModSecurity’s capabilities. You need not worry; it’s easy to do. I promise.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

225

14 Extending Rule Language
The ModSecurity Rule Language is pretty good at meeting users’ requirements—especially
now that it’s entering maturity—but sometimes you’ll need it to do something that it cannot.
In ModSecurity, there is an easy way to extend the rule language if you can program in C. There
are four extension points, enabling you to add custom variables, operators, transformation
functions, and request body processors.

Because ModSecurity is part of Apache, it does not have to implement its own extension in-
frastructure: you extend ModSecurity by writing Apache modules. It’s a great time-saver if
you have previous Apache programming experience. But, even if you don’t, finding people
who do will be generally easy. After all, Apache is one of the most popular programs ever.

For years, the common way to learn how to write Apache modules was to study exist-
ing modules, especially the ones bundled with Apache itself. (My favorite always has been
mod_rewrite.) These days, however, we have proper documentation, thanks to Nick Kew, who
wrote The Apache Modules Book (Prentice Hall, 2007). If you are planning to do some serious
work, you should definitely get Nick’s book. For simple efforts, what’s in this section should
be sufficient.

With or without the book, you should familiarize yourself with the Apache Portable
Runtime [http://apr.apache.org] (APR) and the Apache Portable Runtime Utility [http://
apr.apache.org] (APR-Util) libraries, which make the infrastructure on top of which Apache
is built. Whenever you program an Apache module, you have full access to the APR and APR-
Util libraries. That’s quite handy, because they contain tons of useful functionality.

The remainder of this section will introduce a template module, which you can use as a start-
ing point for your ModSecurity extensions, and then implement three modules, one for each
extension point. For the examples, I will use the sample code included with ModSecurity and
stored in the ext subfolder (apache2/api in older releases).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://apr.apache.org
http://apr.apache.org
http://apr.apache.org
http://apr.apache.org
http://apr.apache.org
http://apr.apache.org

226 Chapter 14: Extending Rule Language

Extension Template
I am first going to show you how to create a template module that only establishes the infra-
structure on top of which we will build later.

Note
Before you begin, ensure that you have the ability to compile custom Apache mod-
ules. This is the same process as the one where you custom-compile ModSecurity
itself. In addition, you will need the source code for the exact version of ModSecurity
you are writing extensions for.

The template module is a complete Apache module, which you should be able to compile and
install. You can practice with it to ensure that your environment has all the right components
for custom Apache module development.

Here is the complete module source code:

#include "httpd.h"
#include "http_core.h"
#include "http_config.h"
#include "http_log.h"
#include "http_protocol.h"
#include "ap_config.h
#include "apr_optional.h"

#include "modsecurity.h"

/**
 * This function is just a placeholder in this template.
 */
static int hook_pre_config(apr_pool_t *mp, apr_pool_t *mp_log, apr_pool_t …
*mp_temp) {
 /* Empty for now, but will be used later. */
 return OK;
}

/**
 * Register to be invoked before configuration begins.
 */
static void register_hooks(apr_pool_t *p) {
 ap_hook_pre_config(hook_pre_config, NULL, NULL, APR_HOOK_LAST);
}

/**
 * This structure is used by Apache to determine that a dynamic
 * library it is loading is a genuine module.
 */

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Extension Template 227

static module AP_MODULE_DECLARE_DATA security_template_module = {
 STANDARD20_MODULE_STUFF,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 register_hooks
};

There are three points of interest in the module:

1. The security_template_module is a structure used by Apache to verify that the dy-
namic library is indeed a module. The name is important and should be unique. You
will use the same name when you instruct Apache to load the module, later on.

2. The initialization structure security_template_module points to the register_hook
callback, which is going to be the module’s main initialization entry point.

3. The register_hook callback registers another callback, hook_pre_config, which is in-
voked every time Apache is reconfigured. This callback doesn’t do anything in the
template module, but we will add to it later.

You will be compiling the template module using the apxs Apache tool. If it is not in your path,
it will be in the bin/ subfolder of your Apache installation. Assuming you placed the source
code in the file called mod_security_template.c, to compile the template module, invoke:

$ apxs -cia -I/path/to/modsecurity/source_code -I/usr/include/libxml2 …
mod_security_template.c

Note
On Linux, processes are known to crash when the dynamic libraries they are using
change. It is best practice to shut down Apache before adding or removing any of
its modules.

The apxs command line in the example uses 5 switches, which perform the following func-
tions:

1. Compile the module (switch -c).

2. Copy the compiled module to the directory where all other Apache modules are stored
(switch -i).

3. Activate the module by adding the correct LoadModule directive to the configuration
(switch -a).

4. Point to the location of the ModSecurity include files (switch -I/path/to/modsecuri-
ty/source_code).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

228 Chapter 14: Extending Rule Language

5. Point to the location of the libxml2 include files (switch -I/usr/include/libxml2).

The activation step will work if you have at least one existing LoadModule directive in your
configuration. The last line will say something similar to the following:

[activating module `security_template' in /path/to/apache/conf/httpd.conf].

If you have a more elaborate configuration layout and the apxs tool cannot find at least one
existing LoadModule directive in your httpd.conf, you will have to activate the module man-
ually by adding the following line to the configuration:

LoadModule security_template_module modules/mod_security_template.so

The first parameter must match the module name used in the source code. You should always
place a ModSecurity extension module after the LoadModule line that activates ModSecurity
itself. If you don’t, ModSecurity might not be able to recognize the newly added function.

If Apache starts with the new LoadModule line in the configuration, you’ve successfully com-
pleted this step.

Adding a Transformation Function
Starting from the template module, implementing a new transformation function requires
two steps. First you need to implement a single function, which will be called by ModSecurity
every time a transformation is needed. All transformation functions (in C) use the following
signature:

static int reverse(apr_pool_t *mptmp, unsigned char *input,
 long int input_len, char **rval, long int *rval_len)
{
 /* Transformation code here. */

 /* Return 1 if you change the input, 0 if you don't/ */
 return 1;
}

To examine the implementation of the built-in transformation functions, refer to the file
re_tfns.c in the ModSecurity source code.

You should generally use the same name for the C function as the name you intend to use
for the transformation function in ModSecurity. The 5 parameters in the signature are the
following:

1. apr_pool_t *mptp: APR memory pool you can use to allocate memory from

2. unsigned char *input: pointer to the input string you need to transform

3. long int input_len: length of the input string

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding a Transformation Function 229

4. char **rval: pointer in which to return the output string

5. long int rval_len: length of the output string

Note
Remember that ModSecurity does not use NUL-terminated strings. Always use the
input_len parameter, which contains the input length.

If your transformation always results with an output string that is equal to or shorter than the
input string, you should make your changes in place, overwriting the input string. By doing
so, you save on memory allocation, thus speeding up your transformation function. In this
case, the rval pointer should point to the input string on return.

If the output can be longer, use the mptmp memory pool to allocate from, then point rval to the
newly allocated memory chunk. The memory you allocate will be deallocated automatically,
when ModSecurity clears the temporary memory pool. With any other memory allocation
method, you would create a memory leak, because deallocation is always manual and you
won’t have an opportunity to invoke it.

Here’s the complete source code of the transformation function example included with Mod-
Security:

/**
 * This function will be invoked by
 * ModSecurity to transform input.
 */
static int reverse(apr_pool_t *mptmp, unsigned char *input,
 long int input_len, char **rval, long int *rval_len)
{
 /* Transformation functions can choose to do their
 * thing in-place, overwriting the existing content. This
 * is normally possible only if the transformed content
 * is of equal length or shorter.
 *
 * If you need to expand the content use the temporary
 * memory pool mptmp to allocate the space.
 */

 /* Reverse the string in place, but only if it's long enough. */
 if (input_len > 1) {
 long int i = 0;
 long int j = input_len - 1;
 while(i < j) {
 char c = input[i];
 input[i] = input[j];
 input[j] = c;
 i++;
 j--;

Property of Girish Motwani <kushalbooks@yahoo.co.in>

230 Chapter 14: Extending Rule Language

 }
 }

 /* Tell ModSecurity about the content
 * we have generated. In this case we
 * merely point back to the input buffer.
 */
 *rval = (char *)input;
 *rval_len = input_len;

 /* Must return 1 if the content was
 * changed, or 0 otherwise.
 */
 return 1;
}

The return value from a transformation function should always be 1 if the content you are
returning is different from the content you received on input, and 0 otherwise. Even if you
placed the output in a newly allocated memory chunk, if it is the same, the return code should
be 0. Returning the correct response code will allow ModSecurity to optimize certain things
when there are no changes, but you shouldn’t worry to much about it. If keeping track of
whether you made a change is difficult or expensive, just return 1.

Now that you have the function, you need to register it with ModSecurity. For that, use the
Apache mechanism called optional functions. It’s a two-step process:

1. Ask Apache to find you the registration function, which will have been exported by
ModSecurity beforehand.

2. Register the new transformation function.

/**
 * Register transformation function with ModSecurity.
 */
static int pre_config(apr_pool_t *mp, apr_pool_t *mp_log, apr_pool_t *mp_temp) {
 void (*fn)(const char *name, void *fn);

 /* Look for the registration function
 * exported by ModSecurity.
 */
 fn = APR_RETRIEVE_OPTIONAL_FN(modsec_register_tfn);
 if (fn) {
 /* Use it to register our new
 * transformation function under the
 * name "reverse".
 */
 fn("reverse", (void *)reverse);
 } else {
 ap_log_error(APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, 0, NULL,

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding an Operator 231

 "mod_tfn_reverse: Unable to find modsec_register_tfn.");
 }

 return OK;
}

Once you restart Apache, the new transformation function will be equal to the ones that come
with ModSecurity. You should always test your new functionality. For example, add the fol-
lowing rule to the configuration:

SecRule ARGS test phase:1,log,deny,t:none,t:reverse

Then, if you send a request with parameter p whose value is set to tset (the opposite of test),
you should get a 403 response in return. The debug log excerpt shows the new reverse trans-
formation function working as expected:

[4] Recipe: Invoking rule 9d77ed8; [file "/home/ivanr/apache/conf/httpd.conf"] …
[line "509"].
[5] Rule 9d77ed8: SecRule "ARGS" "@rx test" "phase:1,auditlog,t:none,t:reverse,…
log,deny"
[9] T (0) reverse: "test"
[4] Transformation completed in 56 usec.
[4] Executing operator "rx" with param "test" against ARGS:p.
[9] Target value: "test"
[4] Operator completed in 59 usec.
[4] Rule returned 1.
[9] Match, intercepted -> returning.
[1] Access denied with code 403 (phase 1). Pattern match "test" at ARGS:p. [file …
"/home/ivanr/apache/conf/httpd.conf"] [line "509"]

Note
Another example of a transformation function implemented as an extension
is t:cmdLine [http://www.approach.be/security-modsecurity.html], written by
Marc Stern. Even if you are not interested in the code, the transformation function
is a good addition to ModSecurity.

Adding an Operator
Creating new operators is slightly more difficult, because two functions are needed: there’s
an additional (and optional) initialization step, which allows your code to do some work at
configure-time and reuse it at runtime. The split of the work sometimes allows for significant
performance improvements. In ModSecurity, the source code for the built-in operators is in
the file re_operators.c.

The new operator example adds a new string matching function based on the
Boyer-Moore-Horspool algorithm [http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.approach.be/security-modsecurity.html
http://www.approach.be/security-modsecurity.html
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm

232 Chapter 14: Extending Rule Language

%E2%80%93Horspool_algorithm]. I will not show here the code for the algorithm itself, as-
suming that the following two functions are already implemented:

static void initBoyerMooreHorspool(const char *pattern, int patlength,
 int *bm_badcharacter_array);

static int BoyerMooreHorspool(const char *pattern, int patlength,
 const char *text, int textlen, int *bm_badcharacter_array);

If you are curious, of course, you can always look at the implementation at the end of the
mod_op_strstr.c file (included with ModSecurity). The string matching algorithm does re-
quire initialization, so we will be using both steps.

The initialization code is as follows:

/**
 * Operator parameter initialisation entry point.
 */
static int op_strstr_init(msre_rule *rule, char **error_msg) {
 /* Operator initialisation function will be called once per
 * statement where operator is used. It is meant to be used
 * to check the parameters to see whether they are present
 * and if they are in the correct format.
 */

 /* In this example we just look for a simple non-empty parameter. */
 if ((rule->op_param == NULL)||(strlen(rule->op_param) == 0)) {
 *error_msg = apr_psprintf(rule->ruleset->mp, "Missing parameter …
for operator 'strstr'.");
 return 0; /* ERROR */
 }

 /* If you need to transform the data in the parameter into something
 * else you should do that here. Simply create a new structure to hold
 * the transformed data and place the pointer to it into rule->op_param_data.
 * You will have access to this pointer later on.
 */
 rule->op_param_data = apr_pcalloc(rule->ruleset->mp, …
ALPHABET_SIZE * sizeof(int));
 initBoyerMooreHorspool(rule->op_param, strlen(rule->op_param), …
(int *)rule->op_param_data);

 /* OK */
 return 1;
}

Unlike with the transformation function example, here we get to work with ModSecuri-
ty structures directly. The first parameter of the operator initialization is a pointer to the

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm

Adding an Operator 233

msre_rule structure (full definition in re.h). There are two fields in this structure that you
will want to use:

• op_param: a NUL-terminated string that may contain a parameter for your operator.

• op_param_data: a generic pointer for your operators’ use.

The idea is that you will check the parameter available in op_param and do something with it,
then perform the initialization work and store a pointer to the results in op_param_data. When
your operator is invoked at runtime, it will have access to the same msre_rule structure, and
thus to op_param_data. Should you need an example, the code for the @rx and @pm operators
demonstrates how parameter preparation is done.

• If you need to allocate memory, use the memory pool in rule->ruleset->mp, as in the
example.

• If your initialization fails, generate an error string, store it in error_msg (the second
function parameter), and return a zero.

The operator execution code is equally simple:

/**
 * Operator execution entry point.
 */
static int op_strstr_exec(modsec_rec *msr, msre_rule *rule, msre_var *var, …
char **error_msg) {
 /* Here we need to inspect the contents of the supplied variable. */

 /* In a general case it is possible for the value
 * to be NULL. What you need to do in this case
 * depends on your operator. In this example we return
 * a "no match" response.
 */
 if (var->value == NULL) return 0; /* No match. */

 /* Another thing to note is that variables are not C strings,
 * meaning the NULL byte is not used to determine the end
 * of the string. Variable length var->value_len should be
 * used for this purpose.
 */

 if (BoyerMooreHorspool(rule->op_param, strlen(rule->op_param),
 var->value, var->value_len, (int *)rule->op_param_data) >= 0)
 {
 return 1; /* Match. */
 }

 return 0; /* No match. */
}

This time, you will receive 4 parameters:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

234 Chapter 14: Extending Rule Language

1. modsec_rec *msr: the structure where all transaction data is stored

2. msre_rule *rule: the same rule structure you received in the initialization phase

3. msre_var *var: the variable structure, which holds the data the operators needs to in-
spect

4. char **error_msg: an error message pointer, which needs to contain an error message
on error

The data you need to inspect is stored in a msre_var instance, which has the following layout:

struct msre_var {
 const char *name;
 const char *value;
 unsigned int value_len;
 const char *param;
 const void *param_data;
 msre_var_metadata *metadata;
 msc_regex_t *param_regex;
 unsigned int is_negated;
 unsigned int is_counting;
};

Although it looks complex, you need be concerned with only two fields:

• const char *value: pointer to the variable the operator needs to inspect

• unsigned int value_len: the length of the variable

After you inspect the variable, return 0 if there is no match and 1 if there is.

The operator registration step is conceptually identical to that used for transformation func-
tions, except that you use the modsec_register_operator optional function:

static int hook_pre_config(apr_pool_t *mp, apr_pool_t *mp_log, …
apr_pool_t *mp_temp) {
 void (*fn)(const char *name, void *fn_init, void *fn_exec);

 /* Look for the registration function
 * exported by ModSecurity.
 */
 fn = APR_RETRIEVE_OPTIONAL_FN(modsec_register_operator);
 if (fn) {
 /* Use it to register our new
 * transformation function under the
 * name "reverse".
 */
 fn("strstr", (void *)op_strstr_init, (void *)op_strstr_exec);
 } else {
 ap_log_error(APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, 0, NULL,
 "mod_op_strstr: Unable to find modsec_register_operator.");

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding a Variable 235

 }

 return OK;
}

Adding a Variable
To generate new variables, you typically need to implement one function call. The example
that comes with ModSecurity is actually split across three functions, but that’s done for code
reuse. Here’s the simplified code:

static int var_remote_addr_port_generate(modsec_rec *msr, msre_var *var,
 msre_rule *rule, apr_table_t *vartab, apr_pool_t *mptmp)
{
 msre_var *rvar = NULL;

 if (value == NULL) return 0;

 /* Generate new variable. */
 rvar = apr_pmemdup(mptmp, var, sizeof(msre_var));
 rvar->value = apr_psprintf(mptmp, "%s:%d", msr->remote_addr, msr->remote_port);
 rvar->value_len = strlen(rvar->value);

 /* Add variable to the collection. */
 apr_table_addn(vartab, rvar->name, (void *)rvar);

 return 1;
}

The following parameters are provided:

1. modsec_rec *msr: the structure where all transaction data is stored

2. msre_var *var: variable template

3. apr_table_t *vartab: the collection used to store the variables being prepared for in-
spection

4. apr_pool_t *mptmp: the memory pool from which you can allocate memory

Creating new variables is a four-step process:

1. Create the variable data. How you do that depends on the nature of the data, but it can
be as easy as using a single apr_sprintf() call (as in the example).

2. Create a new msre_var structure, duplicating from the one already provided in var,
and populate the value and value_len fields.

3. Using apr_table_addn(), add the newly created msre_var structure to the vartab col-
lection.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

236 Chapter 14: Extending Rule Language

4. Return 1 to indicate that you’ve added one variable to the collection. If you create
more than one variable (by just repeating steps 1 through 3, keep track of how many
new variables there are and return the correct value at the end of the function).

Variable registration is slightly more involved, but only because you need to help ModSecurity
do most of the runtime work for you.

static int hook_pre_config(apr_pool_t *mp, apr_pool_t *mp_log, …
apr_pool_t *mp_temp) {
 void (*register_fn)(const char *name, unsigned int type,
 unsigned int argc_min, unsigned int argc_max,
 void *fn_validate, void *fn_generate,
 unsigned int is_cacheable, unsigned int availability);

 /* Look for the registration function
 * exported by ModSecurity.
 */
 register_fn = APR_RETRIEVE_OPTIONAL_FN(modsec_register_variable);
 if (register_fn) {
 /* Use it to register our new
 * variable under the
 * name "REMOTE_ADDR_PORT".
 */
 register_fn(
 "REMOTE_ADDR_PORT",
 VAR_SIMPLE,
 0, 0,
 NULL,
 var_remote_addr_port_generate,
 VAR_DONT_CACHE,
 PHASE_REQUEST_HEADERS
);
 } else {
 ap_log_error(APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, 0, NULL,
 "mod_var_remote_addr_port: Unable to find modsec_register_variable.");
 }

 return OK;
}

To register a variable you need to use 8 parameters, but apart from that, the registration
process does not hold any surprises:

1. const char *name: variable name.

2. unsigned int type: variable type; use VAR_SIMPLE to indicate that you will return only
one value, or VAR_LIST to indicate the possibly of returning multiple values.

3. unsigned int argc_min: variable parameter definition; use 0 if you don’t need to use a
parameter, or 1 if you do.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding a Variable 237

4. unsigned int argc_max: variable parameter definition; use 0 if you do not allow a pa-
rameter, or 1 if you do.

5. void *fn_validate: optional pointer to the parameter validation function.

6. void *fn_generate: pointer to the generation function.

7. unsigned int is_cacheable: is the variable cacheable? If generating the variable is ex-
pensive and the value will not likely to change during the duration of a transaction, set
it to VAR_CACHE. Otherwise, set it to VAR_DONT_CACHE.

8. unsigned int availability: the phase in which the variable becomes avail-
able: PHASE_REQUEST_HEADERS, PHASE_REQUEST_BODY, PHASE_RESPONSE_HEADERS,
PHASE_RESPONSE_BODY or PHASE_LOGGING. ModSecurity should use this value to ensure
that the variable isn’t referenced in the rules before it is available. (I say “should” be-
cause ModSecurity does not do that at the moment.)

As you know, in ModSecurity variables can have parameters. For example, you use ARGS:p to
request the parameter named p, and ARGS:/^p/ to request all the parameters that start with p.
If you allow parameters for your variables, the single parameter will be placed in var->param.
How you interpret the parameter depends on the nature of the variable. For inspiration, you
can look up the var_args_generate() function in re_variables.c, which implements the ARGS
collection.

Finally, if you think you can speed up variable retrieval by using configure-time initialization,
supply a separate validation function when you register your variable. For example:

static char *var_generic_list_validate(msre_ruleset *ruleset, msre_var *var) {
 /* Is it OK if there's no parameter provided? Return NULL if
 * it is. If you require a parameter and you correctly registered
 * the variable, your validation function will never be invoked.
 */
 if (var->param == NULL) return NULL;

 /* Validate the value in var->param. */
 // ...

 /* Perform your initialization work. */
 // ...

 /* Store initialization data for subsequent retrieval. */
 var->param_data = my_opaque_pointer;

 /* No error. */
 return NULL;
}

If you need more examples, all the ModSecurity variables are implemented in the file
re_variables.c.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

238 Chapter 14: Extending Rule Language

Adding a Request Body Processor
Every request body processor needs to implement three entry points: initialization, data pro-
cessing, and finalization. The initialization and finalization functions will be invoked only
once per request body, but the data processing function may be invoked many times, each
time with a chunk of request body data. The example in this section implements a very simple
request body processor that counts only the number of bytes seen.

First, register your request body processor in the hook_pre_config() function:

static int hook_pre_config(apr_pool_t *mp, apr_pool_t *mp_log, apr_pool_t *mp_temp) {
 void (*fn)(const char *name,
 void *fn_init, void *fn_process, void *fn_complete);

 /* Look for the registration function exported by ModSecurity. */
 fn = APR_RETRIEVE_OPTIONAL_FN(modsec_register_reqbody_processor);
 if (fn) {
 /* Use it to register our new request body parser functions under
 * the name "EXAMPLE".
 */
 fn("EXAMPLE",
 (void *)example_init,
 (void *)example_process,
 (void *)example_complete);
 }
 else {
 ap_log_error(APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, 0, NULL,
 "mod_reqbody_example: Unable to find modsec_register_reqbody_processor.");
 }

 return OK;
}

Initialization is usually straightforward; use it to create a request body processor context,
which you will need to keep the state during parsing:

/**
 * This function will be invoked to initialize the processor. This is
 * probably only needed for streaming parsers that must create a context.
 */
static int example_init(modsec_rec *msr, char **error_msg)
{
 if (error_msg == NULL) return -1;
 *error_msg = NULL;

 ap_log_error(APLOG_MARK, APLOG_INFO | APLOG_NOERRNO, 0, NULL,
 "mod_reqbody_example: init()");

 msr->reqbody_processor_ctx = apr_pcalloc(msr->mp, sizeof(example_ctx));

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Adding a Request Body Processor 239

 if (msr->reqbody_processor_ctx == NULL) {
 /* Set error message and return -1 if unsuccessful */
 *error_msg = apr_pstrdup(msr->mp, "failed to create example reqbody …
processor context");
 return -1;
 }

 /* Return 1 on success */
 return 1;
}

Finalization is usually equally simple, although some parsers will need to do more work here.
Remember that you shouldn’t deallocate your context. Because all allocation is done from a
memory pool, ModSecurity will release the allocated memory all at once at the end of trans-
action.

In our example, at the end of parsing, we simply print the number of bytes seen to the log:

/**
 * This function is called to signal the parser that the request body is
 * complete. Here you should do any final parsing. For non-streaming parsers
 * you can parse the data in msr->msc_reqbody_buffer of length
 * msr->msc_reqbody_length. See modsecurity_request_body_end_urlencoded() in
 * msc_reqbody.c for an example of this.
 */
static int example_complete(modsec_rec *msr, char **error_msg)
{
 example_ctx *ctx = (example_ctx *)msr->reqbody_processor_ctx;

 if (error_msg == NULL) return -1;
 *error_msg = NULL;

 ap_log_error(APLOG_MARK, APLOG_INFO | APLOG_NOERRNO, 0, NULL,
 "mod_reqbody_example: complete()");

 ap_log_error(APLOG_MARK, APLOG_INFO | APLOG_NOERRNO, 0, NULL,
 "mod_reqbody_example: request body length=%lu", ctx->length);

 /* Return 1 on success */
 return 1;
}

The processing function is usually where all the work is. You will be provided data in small
pieces, as it is received from the client. On every invocation, you will retrieve your context, do
some processing, and return signaling success or failure.

There is one additional duty that you need to perform: keeping track of the actual data bytes
seen in a request body. There is no universal definition of data bytes, so you are free to define
it as you see fit. For example, the multipart/form-data parser will exclude markup and file

Property of Girish Motwani <kushalbooks@yahoo.co.in>

240 Chapter 14: Extending Rule Language

content when counting data bytes. The data size you calculate here is what is checked for limits
specified by the SecRequestBodyNoFilesLimit directive:

/**
 * This function will be invoked whenever the ModSecurity has data to
 * be processed. You probably at least need to increment the no_files
 * length, but otherwise this is only useful for a streaming parser.
 */
static int example_process(modsec_rec *msr,
 const char *buf, unsigned int size, char **error_msg)
{
 example_ctx *ctx = (example_ctx *)msr->reqbody_processor_ctx;

 if (error_msg == NULL) return -1;
 *error_msg = NULL;

 ap_log_error(APLOG_MARK, APLOG_INFO | APLOG_NOERRNO, 0, NULL,
 "mod_reqbody_example: process()");

 /* Need to increment the no_files length if this is not an uploaded file.
 * Failing to do this will mess up some other limit checks.
 */
 msr->msc_reqbody_no_files_length += size;

 /* Check for an existing context and do something interesting
 * with the chunk of data we have been given.
 */
 if (ctx != NULL) {
 ctx->length += size;
 }

 /* Return 1 on success */
 return 1;
}

Summary
In this final chapter of the book (not counting the reference manual that follows in the second
part), I led you through the process of adding new elements to the ModSecurity rule language.
The extension mechanism of ModSecurity really is a case of standing on the shoulders of
giants: you get to use a polished and well-documented extension mechanism implemented for
Apache, while the developers (of ModSecurity) get to support extensions with only a dozen
lines of code.

With this chapter, you’ve reached the end of the book, and you now know pretty much every-
thing you need to about ModSecurity. This may be where your real work begins, because al-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Summary 241

though you now know the tool, keeping up with web application security—which you need
to understand in order to use ModSecurity in the right way—is often a full-time job.

But it’s a fun one!

Property of Girish Motwani <kushalbooks@yahoo.co.in>

242

Property of Girish Motwani <kushalbooks@yahoo.co.in>

II Reference Manual
This part of the book contains an unofficial ModSecurity Reference Manual, which started its
life in February 2010 as a fork of the official manual (with permission of Breach Security, Inc.).
Although the intention was to contribute all improvements back to ModSecurity, with version 2.6
the project moved the documentation from DocBook into a wiki, which effectively made synchro-
nization impossible.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Property of Girish Motwani <kushalbooks@yahoo.co.in>

245

15 Directives
This section documents the configuration directives currently available in ModSecurity.

SecAction
Description: Unconditionally processes the action list it receives as the first and only para-
meter. The syntax of the parameter is identical to that of the third parameter of SecRule.

Syntax: SecAction "action1,action2,action3,...“

Scope: Any

Version: 2.0.0

This directive is commonly used to set variables and initialize persistent collections using the
initcol action. For example:

SecAction nolog,phase:1,initcol:RESOURCE=%{REQUEST_FILENAME}

SecArgumentSeparator
Description: Specifies which character to use as the separator for application/x-www-form-
urlencoded content.

Syntax: SecArgumentSeparator character

Default: &

Scope: Main

Version: 2.0.0

This directive is needed if a backend web application is using a nonstandard argument separa-
tor. Applications are sometimes (very rarely) written to use a semicolon separator. You should
not change the default setting unless you establish that the application you are working with
requires a different separator. If this directive is not set properly for each web application, then

Property of Girish Motwani <kushalbooks@yahoo.co.in>

246 Chapter 15: Directives

ModSecurity will not be able to parse the arguments appropriately and the effectiveness of
the rule matching will be significantly decreased.

SecAuditEngine
Description: Configures the audit logging engine.

Syntax: SecAuditEngine On|Off|RelevantOnly

Default: Off

Scope: Any

Version: 2.0.0

The SecAuditEngine directive is used to configure the audit engine, which logs complete trans-
actions. ModSecurity is currently able to log most, but not all transactions. Transactions in-
volving errors (e.g., 400 and 404 transactions) use a different execution path, which ModSe-
curity does not support.

Note
If you need to change the audit log engine configuration on a per-transaction basis
(e.g., in response to some transaction data), use the ctl action.

The following example demonstrates how SecAuditEngine is used:

SecAuditEngine RelevantOnly
SecAuditLog logs/audit/audit.log
SecAuditLogParts ABCFHZ
SecAuditLogType concurrent
SecAuditLogStorageDir logs/audit
SecAuditLogRelevantStatus ^(?:5|4\d[^4])

The possible values for the audit log engine are as follows:

• On: log all transactions

• Off: do not log any transactions

• RelevantOnly: only the log transactions that have triggered a warning or an error, or
have a status code that is considered to be relevant (as determined by the SecAuditLo-
gRelevantStatus directive)

SecAuditLog
Description: Defines the path to the main audit log file (serial logging format) or the concur-
rent logging index file (concurrent logging format). When used in combination with mlogc
(only possible with concurrent logging), this directive defines the mlogc location and com-
mand line.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecAuditLog2 247

Syntax: SecAuditLog /path/to/audit.log

Scope: Any

Version: 2.0.0

This file will be used to store the audit log entries if serial audit logging format is used. If
concurrent audit logging format is used this file will be used as an index, and contain a record
of all audit log files created. If you are planning to use concurrent audit logging to send your
audit log data off to a remote server you will need to deploy the ModSecurity Log Collector
(mlogc), like this:

SecAuditLog "|/path/to/mlogc /path/to/mlogc.conf"

Note
This audit log file is opened on startup when the server typically still runs as root.
You should not allow non-root users to have write privileges for this file or for the
directory it is stored in.

SecAuditLog2
Description: Defines the path to the secondary audit log index file when concurrent logging
is enabled. See SecAuditLog for more details.

Syntax: SecAuditLog2 /path/to/audit.log

Scope: Any

Version: 2.1.2

The purpose of SecAuditLog2 is to make logging to two remote servers possible, which is typ-
ically achieved by running two instances of the mlogc tool, each with a different configuration
(in addition, one of the instances will need to be instructed not to delete the files it submits).
This directive can be used only if SecAuditLog was previously configured and only if concur-
rent logging format is used.

SecAuditLogDirMode
Description: Configures the mode (permissions) of any directories created for the concurrent
audit logs, using an octal mode value as parameter (as used in chmod).

Syntax: SecAuditLogDirMode octal_mode|"default"

Default: 0600

Scope: Any

Version: 2.5.10

Property of Girish Motwani <kushalbooks@yahoo.co.in>

248 Chapter 15: Directives

The default mode for new audit log directories (0600) only grants read/write access to the
owner (typically the account under which Apache is running, for example apache). If access
from other accounts is needed (e.g., for use with mpm-itk), then you may use this directive
to grant additional read and/or write privileges. You should use this directive with caution to
avoid exposing potentially sensitive data to unauthorized users. Using the value default as
parameter reverts the configuration back to the default setting. This feature is not available
on operating systems not supporting octal file modes.

Example:

SecAuditLogDirMode 02750

Note
The process umask may still limit the mode if it is being more restrictive than the
mode set using this directive.

SecAuditLogFileMode
Description: Configures the mode (permissions) of any files created for concurrent audit logs
using an octal mode (as used in chmod). See SecAuditLogDirMode for controlling the mode of
created audit log directories.

Syntax: SecAuditLogFileMode octal_mode|"default"

Example Usage: SecAuditLogFileMode 00640

Scope: Any

Version: 2.5.10

This feature is not available on operating systems not supporting octal file modes. The de-
fault mode (0600) only grants read/write access to the account writing the file. If access from
another account is needed (using mpm-itk is a good example), then this directive may be re-
quired. However, use this directive with caution to avoid exposing potentially sensitive data
to unauthorized users. Using the value “default” will revert back to the default setting.

Note
The process umask may still limit the mode if it is being more restrictive than the
mode set using this directive.

SecAuditLogParts
Description: Defines which parts of each transaction are going to be recorded in the audit
log. Each part is assigned a single letter; when a letter appears in the list then the equivalent
part will be recorded. See below for the list of all parts.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecAuditLogParts 249

Syntax: SecAuditLogParts PARTLETTERS

Example Usage: SecAuditLogParts ABCFHZ

Scope: Any

Version: 2.0.0

Default: ABCFHZ

Note
The format of the audit log format is documented in detail in the section called “Au-
dit Log” in Chapter 20.

Available audit log parts:

• A: Audit log header (mandatory).

• B: Request headers.

• C: Request body (present only if the request body exists and ModSecurity is configured
to intercept it).

• D: Reserved for intermediary response headers; not implemented yet.

• E: Intermediary response body (present only if ModSecurity is configured to inter-
cept response bodies, and if the audit log engine is configured to record it). Interme-
diary response body is the same as the actual response body unless ModSecurity inter-
cepts the intermediary response body, in which case the actual response body will con-
tain the error message (either the Apache default error message, or the ErrorDocument
page).

• F: Final response headers (excluding the Date and Server headers, which are always
added by Apache in the late stage of content delivery).

• G: Reserved for the actual response body; not implemented yet.

• H: Audit log trailer.

• I: This part is a replacement for part C. It will log the same data as C in all cases except
when multipart/form-data encoding in used. In this case, it will log a fake applica-
tion/x-www-form-urlencoded body that contains the information about parameters
but not about the files. This is handy if you don’t want to have (often large) files stored
in your audit logs.

• J: Contains information on the uploaded files (requests using multipart/form-data
encoding). Available as of 2.6.0.

• K: This part contains a full list of every rule that matched (one per line) in the order
they were matched. The rules are fully qualified and will thus show inherited actions
and default operators. Available as of 2.5.0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

250 Chapter 15: Directives

• Z: Final boundary, signifies the end of the entry (mandatory).

SecAuditLogRelevantStatus
Description: Configures which response status code is to be considered relevant for the pur-
pose of audit logging.

Syntax: SecAuditLogRelevantStatus REGEX

Example Usage: SecAuditLogRelevantStatus ^(?:5|4\d[^4])

Scope: Any

Version: 2.0.0

The main purpose of this directive is to allow you to configure audit logging for only the trans-
actions that have the status code that matches the supplied regular expression. For example,
you might want to log all application errors (status code 500). Although you could achieve the
same effect with a rule in phase 5, SecAuditLogRelevantStatus is sometimes better, because
it continues to work even when SecRuleEngine is disabled.

SecAuditLogStorageDir
Description: Configures the directory where concurrent audit log entries are to be stored.

Syntax: SecAuditLogStorageDir /path/to/storage/dir

Example Usage: SecAuditLogStorageDir /usr/local/apache/logs/audit

Scope: Any

Version: 2.0.0

This directive is only needed when concurrent audit logging is used. The directory must al-
ready exist and must be writable by the web server user. Audit log entries are created at run-
time, after Apache switches to a non-root account.

As with all logging mechanisms, ensure that you specify a file system location that has adequate
disk space and is not on the main system partition.

SecAuditLogType
Description: Configures the type of audit logging mechanism to be used.

Syntax: SecAuditLogType Serial|Concurrent

Example Usage: SecAuditLogType Serial

Scope: Any

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecCacheTransformations 251

Version: 2.0.0

The possible values are:

Serial
Audit log entries will be stored in a single file, specified by SecAuditLog. This is conve-
nient for casual use, but it can slow down the server, because only one audit log entry
can be written to the file at any one time.

Concurrent
One file per transaction is used for audit logging. This approach is more scalable when
heavy logging is required (multiple transactions can be recorded in parallel). It is also
the only choice if you need to use remote logging.

SecCacheTransformations
Description: Controls the caching of transformations, which may speed up the processing of
complex rule sets. Caching is off by default starting with 2.5.6, when it was deprecated and
downgraded back to experimental.

Syntax: SecCacheTransformations On|Off [options]

Example Usage: SecCacheTransformations On "minlen:64,maxlen:0"

Scope: Any

Version: 2.5.0; deprecated in 2.5.6.

The first directive parameter can be one of the following:

• On: Cache transformations (per transaction, per phase) allowing identical transforma-
tions to be performed only once.

• Off: Do not cache any transformations, leaving all transformations to be performed
every time they are needed.

The following options are allowed (multiple options must be comma-separated):

• incremental:on|off: Enabling this option will cache every transformation instead of
just the final transformation. The default is off.

• maxitems:N: Do not allow more than N transformations to be cached. Cache will be dis-
abled once this number is reached. A zero value is interpreted as unlimited. This op-
tion may be useful to limit caching for a form with a large number of variables. The
default value is 512.

• minlen:N: Do not cache the transformation if the variable’s length is less than N bytes.
The default setting is 32.

• maxlen:N: Do not cache the transformation if the variable’s length is more than N bytes.
A zero value is interpreted as unlimited. The default setting is 1024.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

252 Chapter 15: Directives

SecChrootDir
Description: Configures the directory path that will be used to jail the web server process.

Syntax: SecChrootDir /path/to/chroot/dir

Example Usage: SecChrootDir /chroot

Scope: Main

Version: 2.0.0

This feature is not available on Windows builds. The internal chroot functionality provided by
ModSecurity works great for simple setups. One example of a simple setup is Apache serving
only static files, or running applications using built-in modules. Some problems you might
encounter with more complex setups:

1. DNS lookups do not work (this is because this feature requires a shared library that is
loaded on demand, after chroot takes place).

2. You cannot send email from PHP, because it wants to use sendmail and sendmail re-
sides outside the jail.

3. In some cases, when you separate Apache from its configuration, restarts and graceful
reloads no longer work.

The best way to use SecChrootDir is the following:

1. Create /chroot to be your main jail directory.

2. Create /chroot/opt/apache inside jail.

3. Create a symlink from /opt/apache to /chroot/opt/apache.

4. Now install Apache into /chroot/opt/apache.

You should be aware that the internal chroot feature might not be 100% reliable. Due to the
large number of default and third-party modules available for the Apache web server, it is not
possible to verify the internal chroot works reliably with all of them. A module, working from
within Apache, can do things that make it easy to break out of the jail. In particular, if you
are using any of the modules that fork in the module initialisation phase (e.g., mod_fastcgi,
mod_fcgid, mod_cgid), you are advised to examine each Apache process and observe its current
working directory, process root, and the list of open files. Consider what your options are and
make your own decision.

SecCollectionTimeout
Description: Configures the default timeout value for all new collections.

Syntax: SecCollectionTimeout TIMEOUT_IN_SECONDS

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecComponentSignature 253

Default: 3600

Example usage: SecCollectionTimeout 604800

Scope: Any

Version: 2.6.3

Use SecCollectionTimeout to set the default timeout value for all your collections at once. You
can specify any value up to 2592000 (30 days). Prior to version 2.6.3, you needed to decide on
the timeout value individually, setting it at the same time a collection is created.

SecComponentSignature
Description: Appends component signature to the ModSecurity signature.

Syntax: SecComponentSignature "COMPONENT_NAME/X.Y.Z (COMMENT)"

Example usage: SecComponentSignature "Core Rules/1.2.3"

Scope: Main

Version: 2.5.0

This directive should be used to make the presence of significant rule sets known. The entire
signature will be recorded in the transaction audit log.

SecContentInjection
Description: Enables content injection using actions append and prepend.

Syntax: SecContentInjection On|Off

Example Usage: SecContentInjection On

Scope: Any

Version: 2.5.0

This directive provides an easy way to control content injection, no matter what the rules
want to do. It is not necessary to have response body buffering enabled in order to use content
injection.

SecCookieFormat
Description: Selects the cookie format that will be used in the current configuration context.

Syntax: SecCookieFormat 0|1

Example Usage: SecCookieFormat 0

Scope: Any

Property of Girish Motwani <kushalbooks@yahoo.co.in>

254 Chapter 15: Directives

Version: 2.0.0

The possible values are:

• 0: Use version 0 (Netscape) cookies. This is what most applications use. It is the default
value.

• 1: Use version 1 cookies.

SecDataDir
Description: Path where persistent data (e.g., IP address data, session data, and so on) is to
be stored.

Syntax: SecDataDir /path/to/dir

Example Usage: SecDataDir /usr/local/apache/logs/data

Scope: Main

This directive must be provided before initcol, setsid, and setuid can be used. The directory
to which the directive points must be writable by the web server user.

SecDebugLog
Description: Path to the ModSecurity debug log file.

Syntax: SecDebugLog /path/to/modsec-debug.log

Example Usage: SecDebugLog /usr/local/apache/logs/modsec-debug.log

Scope: Any

Version: 2.0.0

SecDebugLogLevel
Description: Configures the verboseness of the debug log data.

Syntax: SecDebugLogLevel 0|1|2|3|4|5|6|7|8|9

Example Usage: SecDebugLogLevel 4

Scope: Any

Version: 2.0.0

Messages at levels 1–3 are always copied to the Apache error log. Therefore you can always use
level 0 as the default logging level in production if you are very concerned with performance.
Having said that, the best value to use is 3. Higher logging levels are not recommended in
production, because the heavy logging affects performance adversely.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecDefaultAction 255

The possible values for the debug log level are:

• 0: no logging

• 1: errors (intercepted requests) only

• 2: warnings

• 3: notices

• 4: details of how transactions are handled

• 5: as above, but including information about each piece of information handled

• 9: log everything, including very detailed debugging information

SecDefaultAction
Description: Defines the default list of actions, which will be inherited by the rules in the
same configuration context.

Syntax: SecDefaultAction "action1,action2,action3“

Example Usage: SecDefaultAction "phase:2,log,auditlog,deny,status:403“

Scope: Any

Version: 2.0.0

Default: phase:2,log,auditlog,pass

Every rule following a previous SecDefaultAction directive in the same configuration context
will inherit its settings unless more specific actions are used. Every SecDefaultAction directive
must specify a disruptive action and a processing phase and cannot contain metadata actions.

Warning
SecDefaultAction is not inherited across configuration contexts. (For an example
of why this may be a problem, read the following ModSecurity Blog entry http://
blog.modsecurity.org/2008/07/modsecurity-tri.html.)

SecDisableBackendCompression
Description: Disables backend compression while leaving the frontend compression enabled.
This directive is necessary in reverse proxy mode when the backend servers support response
compression but you wish to inspect response bodies. Unless you disable backend compres-
sion, ModSecurity will see only compressed content, which is not very useful. This directive is
not necessary in embedded mode because ModSecurity performs inspection before response
compression takes place.

Syntax: SecDisableBackendCompression On|Off

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://blog.modsecurity.org/2008/07/modsecurity-tri.html
http://blog.modsecurity.org/2008/07/modsecurity-tri.html

256 Chapter 15: Directives

Scope: Any

Version: 2.6.0

Default: Off

SecGeoLookupDb
Description: Defines the path to the database that will be used for geolocation lookups.

Syntax: SecGeoLookupDb /path/to/db

Example Usage: SecGeoLookupDb /path/to/GeoLiteCity.dat

Scope: Any

Version: 2.5.0

ModSecurity relies on the free geolocation databases (GeoLite City and GeoLite Country) that
can be obtained from MaxMind [http://www.maxmind.com].

SecGsbLookupDb
Description: Defines the path to the database that will be used for geolocation lookups.

Syntax: SecGsbLookupDb /path/to/db

Example Usage: SecGsbLookupDb /path/to/goog-hash-malware.dat

Scope: Any

Version: 2.6.0

Configures a Safe Browsing database for consequent use with the gsbLookup operator. Data-
bases can be obtained from Google’s Safe Browsing project [http://code.google.com/apis/
safebrowsing/]. You will be required to register for an API key, after which you will be pre-
sented with one or more URLs that you can use to make local copies of the database(s). Upon
startup, ModSecurity loads the databases into memory. After you refresh the databases on the
filesystem, you will also need to reconfigure Apache in order for the changes to be propagated
to ModSecurity.

SecGuardianLog
Description: Configures an external program that will receive the information about every
transaction via piped logging.

Syntax: SecGuardianLog |/path/to/httpd-guardian

Example Usage: SecGuardianLog |/usr/local/apache/bin/httpd-guardian

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.maxmind.com
http://www.maxmind.com
http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/

SecInterceptOnError 257

Scope: Main

Version: 2.0.0

Guardian logging is designed to send the information about every request to an external pro-
gram. Because Apache is typically deployed in a multiprocess fashion, which makes informa-
tion sharing between processes difficult, the idea is to deploy a single external process to ob-
serve all requests in a stateful manner, providing additional protection.

Currently the only tool known to work with guardian logging is httpd-guardian, which is part
of the Apache httpd tools project [http://sourceforge.net/projects/apache-tools/]. The httpd-
guardian tool is designed to defend against denial of service attacks. It uses the blacklist
tool (from the same project) to interact with an iptables-based (on a Linux system) or pf-
based (on a BSD system) firewall, dynamically blacklisting the offending IP addresses. It can
also interact with SnortSam [http://www.snortsam.net]. Assuming httpd-guardian is already
configured (look into the source code for the detailed instructions), you only need to add one
line to your Apache configuration to deploy it:

SecGuardianLog |/path/to/httpd-guardian

SecInterceptOnError
Description: When enabled, this directive makes ModSecurity stop processing a phase when
a rule error occurs. Rule errors are relatively rare and are usually a result of a faulty rule (e.g.,
the @ipMatch operator used against something that’s not an IP address, or an attempt to use
@geoLookup without previously having configured a geolocation database).

Syntax: SecInterceptOnError On|Off

Default: Off

Scope: Any

Version: 2.6.0

SecMarker
Description: Adds a fixed rule marker that can be used as a target in a skipAfter action. A
SecMarker directive essentially creates a rule that does nothing and whose only purpose is to
carry the given ID.

Syntax: SecMarker ID

Example Usage: SecMarker 9999

Scope: Any

Version: 2.5.0

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://sourceforge.net/projects/apache-tools/
http://sourceforge.net/projects/apache-tools/
http://www.snortsam.net
http://www.snortsam.net

258 Chapter 15: Directives

The SecMarker directive is available to allow you to choose the best way to implement a skip-
over. In many cases, however, there will be a rule nearby that you can use. In the following
example, which does use SecMarker, the skipAfter could have just as well used rule 15.

SecRule REQUEST_URI "^/$" \
 "chain,t:none,t:urlDecode,t:lowercase,t:normalizePath,skipAfter:99"
SecRule REMOTE_ADDR "^127\.0\.0\.1$" "chain"
SecRule REQUEST_HEADERS:User-Agent \
 "^Apache \(internal dummy connection\)$" "t:none"
SecRule &REQUEST_HEADERS:Host "@eq 0" \
 "deny,log,status:400,id:08,severity:4,msg:'Missing a Host Header'"
SecRule &REQUEST_HEADERS:Accept "@eq 0" \
 "log,deny,log,status:400,id:15,msg:'Request Missing an Accept Header'"

SecMarker 99

SecPcreMatchLimit
Description: Sets the match limit in the PCRE library.

Syntax: SecPcreMatchLimit value

Example Usage: SecPcreMatchLimit 1500

Scope: Main

Version: 2.5.12

Default: 1500

The default can be changed when ModSecurity is prepared for compilation: the --en-
able-pcre-match-limit=val configure option will set a custom default and the --dis-
able-pcre-match-limit option will revert back to the default of the PCRE library.

For more information, refer to the pcre_extra field in the pcreapi man page.

SecPcreMatchLimitRecursion
Description: Sets the match limit recursion in the PCRE library.

Syntax: SecPcreMatchLimitRecursion value

Example Usage: SecPcreMatchLimitRecursion 1500

Scope: Main

Version: 2.5.12

Default: 1500

The default can be changed when ModSecurity is prepared for compilation: the --en-
able-pcre-match-limit-recursion=val configure option will set a custom default and the --

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecPdfProtect 259

disable-pcre-match-limit-recursion option will revert back to the default of the PCRE li-
brary.

For more information, refer to the pcre_extra field in the pcreapi man page.

SecPdfProtect
Description: Enables the PDF XSS protection functionality. Once enabled access to PDF files
is tracked. Direct access attempts are redirected to links that contain one-time tokens. Re-
quests with valid tokens are allowed through, unmodified. Requests with invalid tokens are
also allowed through, but with forced download of the PDF files. This implementation uses
response headers to detect PDF files and thus can be used with dynamically generated PDF
files that do not have the .pdf extension in the request URI.

Syntax: SecPdfProtect On|Off

Example Usage: SecPdfProtect On

Scope: Any

Version: 2.5.0; removed in 2.6.0

SecPdfProtectMethod
Description: Configure desired protection method to be used when requests for PDF files are
detected. Possible values are TokenRedirection and ForcedDownload. The token redirection
approach will attempt to redirect with tokens where possible. This allows PDF files to continue
to be opened inline but works only for GET requests. Forced download always causes PDF
files to be delivered as opaque binaries and attachments. The latter will always be used for
non-GET requests. Forced download is considered to be more secure but may cause usability
problems for users (“This PDF won’t open anymore!”).

Syntax: SecPdfProtectMethod method

Example Usage: SecPdfProtectMethod TokenRedirection

Scope: Any

Version: 2.5.0; removed in 2.6.0

Default: TokenRedirection

SecPdfProtectSecret
Description: Defines the secret that will be used to construct one-time tokens. You should
use a reasonably long value for the secret (e.g., 16 characters is good). Once selected, the secret
should not be changed, as it will break the tokens that were sent prior to change. But it’s not

Property of Girish Motwani <kushalbooks@yahoo.co.in>

260 Chapter 15: Directives

a big deal even if you change it. It will just force download of PDF files with tokens that were
issued in the last few seconds.

Syntax: SecPdfProtectSecret secret

Example Usage: SecPdfProtectSecret MyRandomSecretString

Scope: Any

Version: 2.5.0; removed in 2.6.0

SecPdfProtectTimeout
Description: Defines the token timeout. After token expires, it can no longer be used to allow
access to a PDF file. Request will be allowed through but the PDF will be delivered as an
attachment.

Syntax: SecPdfProtectTimeout timeout

Example Usage: SecPdfProtectTimeout 10

Scope: Any

Version: 2.5.0; removed in 2.6.0

Default: 10

SecPdfProtectTokenName
Description: Defines the name of the token. The only reason you would want to change the
name of the token is if you wanted to hide the fact that you are running ModSecurity. It’s a
good reason, but it won’t really help, as the adversary can look into the algorithm used for PDF
protection and figure it out anyway. It does raise the bar slightly, so go ahead if you want to.

Syntax: SecPdfProtectTokenName name

Example Usage: SecPdfProtectTokenName PDFTOKEN

Scope: Any

Version: 2.5.0; removed in 2.6.0

Default: PDFTOKEN

SecReadStateLimit
Description: Establishes a per-IP address limit on how many connections are allowed to be
in SERVER_BUSY_READ state.

Syntax: SecReadStateLimit LIMIT

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecRequestBodyAccess 261

Example Usage: SecReadStateLimit 32

Scope: Main

Version: 2.5.13

Default: 0 (no limit)

The SERVER_BUSY_READ state is used at the beginning of a transaction and until request head-
ers have been sent. Controlling the number of connections in this state from the same IP ad-
dress can be effective against Slowloris-style attacks but provides only limited coverage. The
SecWriteStateLimit directive (available starting with 2.6.0) may help with request bodies and
slow reading of responses.

If you are running Apache httpd 2.2.15 or later, consider using mod_reqtimeout, which pro-
vides better defense against slow DoS attacks.

SecRequestBodyAccess
Description: Configures whether request bodies will be buffered and processed by ModSe-
curity.

Syntax: SecRequestBodyAccess On|Off

Example Usage: SecRequestBodyAccess On

Scope: Any

Version: 2.0.0

This directive is required if you want to inspect the data transported request bodies (e.g., POST
parameters). Request buffering is also required in order to make reliable blocking possible.

The possible values are:

• On: buffer request bodies

• Off: do not buffer request bodies

SecRequestBodyLimit
Description: Configures the maximum request body size ModSecurity will accept for buffer-
ing.

Syntax: SecRequestBodyLimit LIMIT_IN_BYTES

Example Usage: SecRequestBodyLimit 134217728

Scope: Any

Version: 2.0.0

Default: 134217728 (131072 KB)

Property of Girish Motwani <kushalbooks@yahoo.co.in>

262 Chapter 15: Directives

Anything over the limit will be rejected with status code 413 (Request Entity Too Large). There
is a hard limit of 1 GB.

Note
In ModSecurity 2.5.x and earlier, SecRequestBodyLimit works only when used in the
main server configuration or a VirtualHost container. In these versions, request body
limit is enforced immediately after phase 1 but before phase 2 configuration (i.e.,
whatever is placed in a Location container) is resolved. You can work around this
limitation by using a phase 1 rule that changes the request body limit dynamically
using the ctl:requestBodyLimit action. ModSecurity 2.6.x and later versions do not
have this limitation.

SecRequestBodyLimitAction
Description: Controls what happens once a request body limit configured with SecRequest-
BodyLimit and SecRequestBodyNoFilesLimit is encountered. By default, ModSecurity will re-
ject a request body that is longer than specified. Some sites may not want to allow ModSe-
curity to reject requests, and they can use this directive to instruct ModSecurity to proceed
even when it has only a partial request body. The INBOUND_DATA_ERROR flag will be raised when
ModSecurity has only a partial request body.

Syntax: SecRequestBodyLimitAction Reject|ProcessPartial

Example Usage: SecRequestBodyLimitAction ProcessPartial

Default: Reject in blocking mode, ProcessPartial in detection-only mode

Scope: Any

Version: 2.6.0

SecRequestBodyNoFilesLimit
Description: Configures the maximum request body size ModSecurity will accept for buffer-
ing, excluding the size of any files being transported in the request. This directive is useful
to reduce susceptibility to DoS attacks when someone is sending request bodies of very large
sizes. Web applications that require file uploads must configure SecRequestBodyLimit to a
high value, but because large files are streamed to disk, file uploads will not increase memo-
ry consumption. However, it’s still possible for someone to take advantage of a large request
body limit and send non-upload requests with large body sizes. This directive eliminates that
loophole.

Syntax: SecRequestBodyNoFilesLimit NUMBER_IN_BYTES

Example Usage: SecRequestBodyLimit 131072

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecRequestBodyInMemoryLimit 263

Scope: Any

Version: 2.5.0

Default: 1048576 (1 MB)

Generally speaking, the default value is not small enough. For most applications, you should
be able to reduce it down to 128 KB or lower. Anything over the limit will be rejected with
status code 413 (Request Entity Too Large). There is a hard limit of 1 GB.

SecRequestBodyInMemoryLimit
Description: Configures the maximum request body size that ModSecurity will store in mem-
ory.

Syntax: SecRequestBodyInMemoryLimit LIMIT_IN_BYTES

Example Usage: SecRequestBodyInMemoryLimit 131072

Scope: Any

Version: 2.0.0

Default: 131072 (128 KB)

When a multipart/form-data request is being processed, once the in-memory limit is reached,
the request body will start to be streamed into a temporary file on disk.

SecResponseBodyLimit
Description: Configures the maximum response body size that will be accepted for buffering.

Syntax: SecResponseBodyLimit LIMIT_IN_BYTES

Example Usage: SecResponseBodyLimit 524228

Scope: Any

Version: 2.0.0

Default: 524288 (512 KB)

Anything over this limit will be rejected with status code 500 (Internal Server Error). This
setting will not affect the responses with MIME types that are not selected for buffering. There
is a hard limit of 1 GB.

SecResponseBodyLimitAction
Description: Controls what happens once a response body limit, configured with SecRespon-
seBodyLimit, is encountered. By default, ModSecurity will reject a response body that is longer

Property of Girish Motwani <kushalbooks@yahoo.co.in>

264 Chapter 15: Directives

than specified. Some web sites, however, will produce very long responses, making it difficult
to come up with a reasonable limit. Such sites would have to raise the limit significantly to
function properly, defying the purpose of having the limit in the first place (to control mem-
ory consumption). With the ability to choose what happens once a limit is reached, site ad-
ministrators can choose to inspect only the first part of the response, the part that can fit into
the desired limit, and let the rest through. Some could argue that allowing parts of responses
to go uninspected is a weakness. This is true in theory, but applies only to cases in which the
attacker controls the output (e.g., can make it arbitrary long). In such cases, however, it is not
possible to prevent leakage anyway. The attacker could compress, obfuscate, or even encrypt
data before it is sent back, and therefore bypass any monitoring device.

Syntax: SecResponseBodyLimitAction Reject|ProcessPartial

Example Usage: SecResponseBodyLimitAction ProcessPartial

Scope: Any

Version: 2.5.0

Default: Reject in blocking mode, ProcessPartial in detection-only mode

SecResponseBodyMimeType
Description: Configures which MIME types are to be considered for response body buffering.

Syntax: SecResponseBodyMimeType MIMETYPE MIMETYPE ...

Example Usage: SecResponseBodyMimeType text/plain text/html

Scope: Any

Version: 2.0.0

Default: text/plain text/html

Multiple SecResponseBodyMimeType directives can be used to add MIME types. Use SecRespon-
seBodyMimeTypesClear to clear previously configured MIME types and start over.

SecResponseBodyMimeTypesClear
Description: Clears the list of MIME types considered for response body buffering, allowing
you to start populating the list from scratch.

Syntax: SecResponseBodyMimeTypesClear

Example Usage: SecResponseBodyMimeTypesClear

Scope: Any

Version: 2.0.0

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecResponseBodyAccess 265

SecResponseBodyAccess
Description: Configures whether response bodies are to be buffered.

Syntax: SecResponseBodyAccess On|Off

Example Usage: SecResponseBodyAccess On

Scope: Any

Version: 2.0.0

Default: Off

This directive is required if you plan to inspect HTML responses and implement response
blocking.

Possible values are:

• On: buffer response bodies (but only if the response MIME type matches the list
configured with SecResponseBodyMimeType).

• Off: do not buffer response bodies.

SecRule
Description: Creates a rule that will analyze the selected variables using the selected operator.

Syntax: SecRule VARIABLES OPERATOR [ACTIONS]

Example Usage: SecRule ARGS "@rx attack" "phase:1,log,deny"

Scope: Any

Version: 2.0.0

Every rule must provide one or more variables along with the operator that should be used to
inspect them. If no actions are provided, the default list will be used. (There is always a default
list, even if one was not explicitly set with SecDefaultAction.) If there are actions specified
in a rule, they will be merged with the default list to form the final actions that will be used.
(The actions in the rule will overwrite those in the default list.) Refer to SecDefaultAction
for more information.

SecRuleInheritance
Description: Configures whether the current context will inherit the rules from the parent
context.

Syntax: SecRuleInheritance On|Off

Example Usage: SecRuleInheritance Off

Property of Girish Motwani <kushalbooks@yahoo.co.in>

266 Chapter 15: Directives

Scope: Any

Version: 2.0.0

Default: On

Sometimes when you create a more specific configuration context (for example using the <Lo-
cation> container), you may wish to use a different set of rules than those used in the parent
context. By setting SecRuleInheritance to Off, you prevent the parent rules to be inherited,
which allows you to start from scratch. In ModSecurity 2.5.x it is not possible to override
phase 1 rules from a <Location> configuration context. There are no limitations in that respect
in the current development version (and there won’t be in the next major version).

The possible values are:

• On: inherit rules from the parent context

• Off: do not inherit rules from the parent context

Note
Configuration contexts are an Apache concept. Directives <Directory>, <Files>,
<Location>, and <VirtualHost> are all used to create configuration contexts. For
more information, please go to the Apache documentation, under Configuration
Sections [http://httpd.apache.org/docs/2.0/sections.html].

This directive does not affect how configuration options are inherited.

SecRuleEngine
Description: Configures the rules engine.

Syntax: SecRuleEngine On|Off|DetectionOnly

Example Usage: SecRuleEngine On

Scope: Any

Version: 2.0.0

Default: Off

The possible values are:

• On: process rules

• Off: do not process rules

• DetectionOnly: process rules but never intercept transactions, even when rules are
configured to block

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://httpd.apache.org/docs/2.0/sections.html
http://httpd.apache.org/docs/2.0/sections.html
http://httpd.apache.org/docs/2.0/sections.html

SecRuleRemoveById 267

SecRuleRemoveById
Description: Removes the matching rules from the current configuration context.

Syntax: SecRuleRemoveById ID ID RANGE ...

Example Usage: SecRuleRemoveByID 1 2 "9000-9010"

Scope: Any

Version: 2.0.0

This directive supports multiple parameters, each of which can be a rule ID or a range. Para-
meters that contain spaces must be delimited using double quotes.

SecRuleRemoveByMsg
Description: Removes the matching rules from the current configuration context.

Syntax: SecRuleRemoveByMsg REGEX

Example Usage: SecRuleRemoveByMsg "FAIL"

Scope: Any

Version: 2.0.0

Normally, you would use SecRuleRemoveById to remove rules, but that requires the rules to
have IDs defined. If they don’t, then you can remove them with SecRuleRemoveByMsg, which
matches a regular expression against rule messages.

SecRuleRemoveByTag
Description: Removes the matching rules from the current configuration context.

Syntax: SecRuleRemoveByTag REGEX

Example Usage: SecRuleRemoveByTag "WEB_ATTACK/XSS"

Scope: Any

Version: 2.6.0

This directive is very useful if you want to quickly remove an entire family of rules; however,
it assumes that you are working with a rule set that has all the rules properly categorized.

SecRuleScript
Description: This directive creates a special rule that executes a Lua script to decide whether to
match. The main difference from SecRule is that there are no targets or operators. The script

Property of Girish Motwani <kushalbooks@yahoo.co.in>

268 Chapter 15: Directives

can fetch any variable from the ModSecurity context and use any Lua code to test them. The
second optional parameter is the list of actions, whose meaning is identical to that of SecRule.

Syntax: SecRuleScript /path/to/script.lua [ACTIONS]

Example Usage: SecRuleScript "/path/to/file.lua" "block"

Scope: Any

Version: 2.5.0

All Lua scripts are compiled at configuration time and cached in memory. To reload scripts,
you must reload the entire ModSecurity configuration by restarting Apache. You can find out
more about Lua by visiting its web site [http://www.lua.org].

Example Lua script:

-- Your script must define the main entry
-- point, as below.
function main()
 -- Log something at level 1. Normally you shouldn't be
 -- logging anything, especially not at level 1, but this is
 -- just to show you can. Useful for debugging.
 m.log(1, "Hello world!");

 -- Retrieve one variable.
 local var1 = m.getvar("REMOTE_ADDR");

 -- Retrieve one variable, applying one transformation function.
 -- The second parameter is a string.
 local var2 = m.getvar("ARGS", "lowercase");

 -- Retrieve one variable, applying several transformation functions.
 -- The second parameter is now a list. You should note that m.getvar()
 -- requires the use of comma to separate collection names from
 -- variable names. This is because only one variable is returned.
 local var3 = m.getvar("ARGS.p", { "lowercase", "compressWhitespace" });

 -- If you want this rule to match return a string
 -- containing the error message. The message must contain the name
 -- of the variable where the problem is located.
 -- return "Variable ARGS:p looks suspicious!"

 -- Otherwise, simply return nil.
 return nil;
end

In this first example, we were only retrieving one variable at the time. In this case, the name
of the variable is known to you. In many cases, however, you will want to examine variables
whose names you won’t know in advance, such as script parameters.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.lua.org
http://www.lua.org

SecRuleUpdateActionById 269

Example showing use of m.getvars() to retrieve many variables at once:

function main()
 -- Retrieve script parameters.
 local d = m.getvars("ARGS", { "lowercase", "htmlEntityDecode" });

 -- Loop through the parameters.
 for i = 1, #d do
 -- Examine parameter value.
 if (string.find(d[i].value, "<script")) then
 -- Always specify the name of the variable where the
 -- problem is located in the error message.
 return ("Suspected XSS in variable " .. d[i].name .. ".");
 end
 end

 -- Nothing wrong found.
 return nil;
end

Note
Although the current implementation of the Lua rules is solid (and production
ready), Lua support is marked as experimental, because the programming interface
may change in a future version of ModSecurity.

SecRuleUpdateActionById
Description: Updates the action list of the specified rule.

Syntax: SecRuleRemoveById RULEID[:offset] ACTIONLIST

Example Usage: SecRuleUpdateActionById 12345 "deny,status:403“

Scope: Any

Version: 2.5.0; offset support was added in 2.6.0.

This directive will overwrite the action list of the specified rule with the actions provided in
the second parameter. It has two limitations: it cannot be used to change the ID or phase of a
rule. Only the actions that can appear only once are overwritten. The actions that are allowed
to appear multiple times in a list will be appended to the end of the list:

SecRule ARGS attack \
 "phase:2,id:12345,t:lowercase,log,pass,msg:'Message text'"

SecRuleUpdateActionById 12345 \
 "t:none,t:compressWhitespace,deny,status:403,msg:'New message text'"

The effective resulting rule in the previous example will be as follows:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

270 Chapter 15: Directives

SecRule ARGS attack \
 "phase:2,id:12345,t:lowercase,t:none,t:compressWhitespace,\
 deny,status:403,msg:'New Message text'"

The addition of t:none will neutralize any previous transformation functions specified
(t:lowercase, in the example).

In 2.6.0, SecRuleUpdateActionById was updated to support offsets, which is needed when you
want to change rules that are part of the chain. In such cases, first use an ID to locate the entire
chain, then use the offset to locate the desired rule.

Warning
In the current implementation, when changing a rule that originally has chain, the
replacement action list must specify chain, too.

SecRuleUpdateTargetById
Description: Updates the list of targets for the specified rule.

Syntax: SecRuleUpdateTargetById RULEID TARGETS [REPLACEMENT_TARGETS]

Example Usage: SecRuleUpdateTargetById 1 !ARGS:username"

Scope: Any

Version: 2.6.0

This is a very useful directive if you run into a rule that inspects parameters that you would
rather ignore. Previously, you would have to remove the entire rule and copy and modify it.
With this directive, you can simply change the rule at configuration time to do what you want.
For example, to prevent a rule from looking at a named parameter, use this directive:

The rule that you want to change, defined in a
separate file that you'd rather leave unchanged
SecRule ARGS PATTERN id:1,phase:2,log,deny

Configuration-time modification of rule #1
SecRuleUpdateTargetById 1 "!ARGS:name"

In the previous example, the target list of rule 1 is changed from ARGS to ARGS|!ARGS:username,
effectively protecting the parameter name from inspection.

Using an alternative syntax, you can also directly replace a variable with something else. For
example:

The rule that you want to change, defined in a
separate file that you'd rather leave unchanged
SecRule ARGS PATTERN id:1,phase:2,log,deny

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecServerSignature 271

Configuration-time modification of rule #1
SecRuleUpdateTargetById 1 ARGS ARGS:username

In this second example, the target list of rule 1 is changed from ARGS to ARGS:username, effec-
tively changing it to inspect only the parameter username.

The directive SecRuleUpdateTargetById operates at configure time. If you need to change rules
at runtime (either appending or replacing), use the equivalent ctl action variant ruleUpdate-
TargetById:

SecRULE ARGS CONDITION phase:2,nolog,pass,ctl:ruleUpdateTargetById=1;!ARGS:name

The syntax of ctl:ruleUpdateTargetById is virtually the same as that of the directive, except
that you need to use semicolons to separate parameters.

SecServerSignature
Description: Instructs ModSecurity to change the data Apache sends out in the Server re-
sponse header.

Syntax: SecServerSignature "NEW_SERVER_SIGNATURE"

Example Usage: SecServerSignature "Acme Web Server 19.99"

Scope: Main

Version: 2.0.0

In order for this directive to work, you must set the Apache ServerTokens directive to Full.
ModSecurity will overwrite the server signature data held in this memory space with the data
set in this directive. If ServerTokens is not set to Full, then the memory space is most likely
not large enough to hold the new data we are looking to insert.

SecStreamInBodyInspection
Description: Instructs ModSecurity to create a copy of request body in STREAM_INPUT_BODY.

Syntax: SecStreamInBodyInspection On|Off

Default: Off

Scope: Any

Version: 2.6.0

When enabled, this directive causes ModSecurity to make the request body available in
STREAM_INPUT_BODY in the form of a single memory buffer. Despite the “stream” part in the
name of the directive and the corresponding variable, there is no streaming involved.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

272 Chapter 15: Directives

This directive might be useful if you need access to the raw request body, but it comes with a
cost of increased memory usage. In particular, when parsing multipart/form-data, the size of
the buffer used by this directive may be as big as the setting in SecRequestBodyLimit instead
of the smaller limit set by SecRequestBodyNoFilesLimit.

You will also need this directive if you want to use the @rsub operator for request body ma-
nipulation.

SecStreamOutBodyInspection
Description: Instructs ModSecurity to create a copy of response body in STREAM_OUTPUT_BODY.

Syntax: SecStreamOutBodyInspection On|Off

Default: Off

Scope: Any

Version: 2.6.0

When enabled, this directive causes ModSecurity to make the response body available in
STREAM_OUTPUT_BODY as a single memory buffer. Despite the “stream” part in the name of the
directive and the corresponding variable, there is no streaming involved.

You might need SecStreamOutBodyInspection if you want to use the @rsub operator against
response bodies. Be warned, however, that doing so will likely double the amount of memory
used for response buffering.

SecTmpDir
Description: Configures the directory where temporary files will be created.

Syntax: SecTmpDir /path/to/dir

Example Usage: SecTmpDir /tmp

Scope: Any

Version: 2.0.0

The location specified needs to be writable by the Apache user process. This is the directory
location where ModSecurity will swap data to disk if it runs out of memory (more data than
what was specified in the SecRequestBodyInMemoryLimit directive) during inspection.

SecUploadDir
Description: Configures the directory where intercepted files will be stored.

Syntax: SecUploadDir /path/to/dir

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecUploadFileLimit 273

Example Usage: SecUploadDir /tmp

Scope: Any

Version: 2.0.0

This directory must be on the same filesystem as the temporary directory defined with SecTm-
pDir. This directive is used with SecUploadKeepFiles.

SecUploadFileLimit
Description: Configures the maximum number of file uploads processed in a multipart POST.

Syntax: SecUploadFileLimit LIMIT

Example Usage: SecUploadFileLimit 10

Scope: Any

Version: 2.5.12

Default: 100

The default limit is set to 100 files, but you are encouraged to reduce this value. Any
file over the limit will not be extracted and the MULTIPART_FILE_LIMIT_EXCEEDED and
MULTIPART_STRICT_ERROR flags will be set. To prevent bypassing any file checks, you must check
for one of these flags.

Note
If the limit is exceeded, the part name and file name will still be recorded in
FILES_NAME and FILES, the file size will be recorded in FILES_SIZES, but there will be
no record in FILES_TMPNAMES, as a temporary file was not created.

SecUploadFileMode
Description: Configures the mode (permissions) of any uploaded files using an octal mode
(as used in chmod).

Syntax: SecUploadFileMode octal_mode|"default"

Example Usage: SecUploadFileMode 0640

Scope: Any

Version: 2.1.6

This feature is not available on operating systems not supporting octal file modes. The default
mode (0600) grants read/write access to the account writing the file only. If access from an-
other account is needed (using clamd is a good example), then this directive may be required.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

274 Chapter 15: Directives

However, use this directive with caution to avoid exposing potentially sensitive data to unau-
thorized users. Using the value “default” will revert back to the default setting.

Note
The process umask may still limit the mode if it is being more restrictive than the
mode set using this directive.

SecUploadKeepFiles
Description: Configures whether the intercepted files will be kept after transaction is
processed.

Syntax: SecUploadKeepFiles On|Off|RelevantOnly

Example Usage: SecUploadKeepFiles On

Scope: Any

Version: 2.0.0

This directive requires the storage directory to be defined (using SecUploadDir).

Possible values are:

• On: keep uploaded files

• Off: do not keep uploaded files

• RelevantOnly: keep only those files that belong to requests that are deemed relevant

SecWebAppId
Description: Creates an application namespace, allowing for separate persistent session and
user storage.

Syntax: SecWebAppId "NAME"

Example Usage: SecWebAppId "WebApp1"

Scope: Any

Version: 2.0.0

Default: default

Application namespaces are used to avoid collisions between session IDs and user IDs when
multiple applications are deployed on the same server. If it isn’t used, a collision between
session IDs might occur.

<VirtualHost *:80>
 ServerName app1.example.com

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SecUnicodeCodePage 275

 SecWebAppId "App1"
 ...
</VirtualHost>

<VirtualHost *:80>
 ServerName app2.example.com
 SecWebAppId "App2"
 ...
</VirtualHost>

In the two examples configurations shown, SecWebAppId is being used in conjunction with the
Apache VirtualHost directives. Applications namespace information is also recorded in the
audit logs (using the WebApp-Info header of the H part).

SecUnicodeCodePage
Description: Configures the code page that will be used for best-effort Unicode character
mapping.

Syntax: SecUnicodeCodePage CODEPAGE

Example Usage: SecUnicodeCodePage 1250

Scope: Main

Version: 2.6.1

This directive requires the map file to be configured with SecUnicodeMapFile. To find out what
code pages are available, refer to the unicode.mapping file included with ModSecurity.

SecUnicodeMapFile
Description: Configures the location of the file that contains best-effort mappings used for
Unicode character conversions.

Syntax: SecUnicodeMapFile /path/to/map.file

Example Usage: SecUnicodeMapFile /opt/modsecurity/etc/unicode.mapping

Scope: Main

Version: 2.6.1

A default map file, unicode.mapping, is included with ModSecurity.

SecWriteStateLimit
Description: Establishes a per-IP address limit of how many connections are allowed to be
in SERVER_WRITE_READ state.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

276 Chapter 15: Directives

Syntax: SecWriteStateLimit LIMIT

Example Usage: SecWriteStateLimit 32

Scope: Main

Version: 2.6.0

Default: 0 (no limit)

Apache switches to SERVER_WRITE_READ after transaction request headers are sent. Limiting the
number of connections (from the same IP address) that can be in this state can be effective
against Slowloris-style attacks that focus on request bodies and slow reading of responses.
When this directive is to set to a value other than zero, ModSecurity will perform an additional
per-transaction check and reject transactions coming from IP addresses that are over the limit.

If you are running Apache httpd 2.2.15 or later, consider using mod_reqtimeout, which pro-
vides better defense against slow DoS attacks.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

277

16 Variables
This section documents the variables currently available in ModSecurity.

ARGS
ARGS is a collection that contains all request parameters, regardless of where they appear in
request (e.g., in the query string or in the request body).

SecRule ARGS attack

ARGS_COMBINED_SIZE
Contains the combined size of all request parameters. Files are excluded from the calculation.
This variable can be useful, for example, to create a rule to ensure that the total size of the
argument data is below a certain threshold. The following rule detects a request whose para-
meters are more than 2500 bytes long:

SecRule ARGS_COMBINED_SIZE "@gt 2500"

ARGS_GET
ARGS_GET is similar to ARGS, but contains only query string parameters.

ARGS_GET_NAMES
ARGS_GET_NAMES is similar to ARGS_NAMES, but contains only the names of query string para-
meters.

ARGS_NAMES
Contains all request parameter names. You can search for specific parameter names that you
want to inspect. In a positive policy scenario, you can also whitelist (using an inverted rule
with the exclamation mark) only the authorized argument names.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

278 Chapter 16: Variables

This example rule allows only two argument names: p and a:

SecRule ARGS_NAMES "!^(p|a)$"

ARGS_POST
ARGS_POST is similar to ARGS, but contains only request body parameters.

ARGS_POST_NAMES
ARGS_POST_NAMES is similar to ARGS_NAMES, but contains only the names of request body para-
meters.

AUTH_TYPE
This variable holds the authentication method used to validate a user, if any of the methods
built into HTTP are used. In a reverse-proxy deployment, this information will not be avail-
able if the authentication is handled in the backend web server.

SecRule AUTH_TYPE "Basic"

DURATION
Contains the number of milliseconds elapsed since the beginning of the current transaction.
Available starting with 2.6.0.

ENV
Collection that provides access to environment variables. Requires a single parameter to spec-
ify the name of the desired variable.

Set environment variable
SecRule REQUEST_FILENAME "printenv" \
 "phase:2,pass,setenv:tag=suspicious"

Inspect environment variable
SecRule ENV:tag "suspicious"

Use setenv to set environment variables.

FILES
Contains a collection of original file names (as they were called on the remote user’s filesys-
tem). Available only on inspected multipart/form-data requests.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

FILES_COMBINED_SIZE 279

SecRule FILES "@rx \.conf$"

FILES_COMBINED_SIZE
Contains the total size of the files transported in request body. Available only on inspected
multipart/form-data requests.

SecRule FILES_COMBINED_SIZE "@gt 100000"

FILES_NAMES
Contains a list of form fields that were used for file upload. Available only on inspected mul-
tipart/form-data requests.

SecRule FILES_NAMES "^upfile$"

FILES_SIZES
Contains a list of individual file sizes. Useful for implementing a size limitation on individual
uploaded files. Available only on inspected multipart/form-data requests.

SecRule FILES_SIZES "@gt 100"

FILES_TMPNAMES
Contains a list of temporary files’ names on the disk. Useful when used together with @in-
spectFile. Available only on inspected multipart/form-data requests.

SecRule FILES_TMPNAMES "@inspectFile /path/to/inspect_script.pl"

GEO
GEO is a collection that contains the data obtained by the most recent execution of the @ge-
oLookup operator.

Available since ModSecurity 2.5.0.

Fields:

• COUNTRY_CODE: Two-character country code. For example, US, GB, and so on.

• COUNTRY_CODE3: Up to three-character country code. For example, GBR.

• COUNTRY_NAME: The full country name.

• COUNTRY_CONTINENT: The two-character continent on which the country is located.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

280 Chapter 16: Variables

• REGION: The two-character region. For the U.S., this is the state; for Canada, it is the
province; and so on.

• CITY: The city name if supported by the database.

• POSTAL_CODE: The postal code if supported by the database.

• LATITUDE: The latitude if supported by the database.

• LONGITUDE: The longitude if supported by the database.

• DMA_CODE: The metropolitan area code if supported by the database (U.S. only).

• AREA_CODE: The phone system area code (U.S. only).

Example:

SecGeoLookupDb /path/to/GeoLiteCity.dat
...
SecRule REMOTE_ADDR "@geoLookup" "chain,drop,msg:'Non-GB IP address'"
SecRule GEO:COUNTRY_CODE "!@streq GB"

HIGHEST_SEVERITY
This variable holds the highest severity of any rules that have matched so far. Severities are
numeric values and thus can be used with comparison operators such as @lt, and so on. A
value of 255 indicates that no severity has been set.

SecRule HIGHEST_SEVERITY "@le 2" \
 "phase:2,deny,status:500,msg:'severity %{HIGHEST_SEVERITY}'"

Note
Higher severities have lower numeric values.

INBOUND_DATA_ERROR
This variable is a flag that will be raised when ModSecurity is not able to buffer the entire
request body and SecRequestBodyLimitAction is set to ProcessPartial. Available as of 2.6.0.

MATCHED_VAR
This variable holds the value of the most-recently matched variable. It is similar to the TX:0,
but it is automatically supported by all operators and there is no need to specify the capture
action.

SecRule ARGS pattern chain,deny
...
SecRule MATCHED_VAR "further scrutiny"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

MATCHED_VAR_NAME 281

MATCHED_VAR_NAME
This variable holds the full name of the most-recently matched variable.

SecRule ARGS pattern \
 "setvar:tx.mymatch=%{MATCHED_VAR_NAME}"
...
SecRule TX:MYMATCH "@eq ARGS:param" deny

MATCHED_VARS
This collection holds the values of all variables that matched in the most recent rule. You
can use MATCHED_VARS to simulate a loop operation, performing multiple progressive checks
against a group of variables. For example:

Match on all parameters that match
on both pattern_1 and pattern_2
SecRule ARGS pattern_1 chain
SecRule MATCHED_VARS pattern_2

In the previous example, ModSecurity will first loop through the variables in ARGS, checking
them against pattern_1 and storing those that match into the MATCHED_VARS collection. In the
second rule, ModSecurity will loop through the matched variables and check them against
pattern_2.

MATCHED_VARS_NAMES
This collections holds the names of all variables that matched in the most recent rule.

MODSEC_BUILD
This variable holds the ModSecurity build number. This variable is intended to be used to
check the build number prior to using a feature that is available only in a certain build. Ex-
ample:

SecRule MODSEC_BUILD "!@ge 02050102" \
 "skipAfter:12345"
SecRule ARGS "@pm some key words" \
 "id:12345,deny,status:500"

MULTIPART_CRLF_LF_LINES
This flag variable will be set to 1 whenever a multipart request uses mixed line terminators.
The multipart/form-data RFC requires that the CRLF sequence be used to terminate lines.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

282 Chapter 16: Variables

Because some client implementations use only LF to terminate lines, you might want to al-
low them to proceed under certain circumstances (if you want to do this, you will need
to stop using MULTIPART_STRICT_ERROR and check each multipart flag variable individual-
ly, avoiding MULTIPART_LF_LINE). However, mixing CRLF and LF line terminators is danger-
ous, as it can allow for evasion. Therefore, in such cases, you will have to add a check for
MULTIPART_CRLF_LF_LINES.

MULTIPART_STRICT_ERROR
The multipart/form-data format is complex and ambiguous, but most implementations do
not follow the specification. ModSecurity uses a dual approach when handling this format:
parsing is permissive, but violations are flagged and exposed in the rule language. A violation
may not be a sign of malice, but should be taken into consideration in most cases.

The MULTIPART_STRICT_ERROR variable is used as an indicator of the problems detected during
the parsing of multipart/form-data. It will be set if any of the following are set:

• MULTIPART_BOUNDARY_QUOTED

• MULTIPART_BOUNDARY_WHITESPACE

• MULTIPART_DATA_AFTER

• MULTIPART_DATA_BEFORE

• MULTIPART_FILE_LIMIT_EXCEEDED

• MULTIPART_HEADER_FOLDING

• MULTIPART_INVALID_HEADER_FOLDING

• MULTIPART_INVALID_QUOTING

• MULTIPART_LF_LINE

• MULTIPART_SEMICOLON_MISSING

• REQBODY_PROCESSOR_ERROR

Except for REQUEST_BODY_PROCESSOR_ERROR, which is set when a major error occurs, each
of the listed variables covers one unusual (although sometimes legal) aspect of the request
body in multipart/form-data format. Your policies should always contain a rule to check
MULTIPART_STRICT_ERROR (which is easier, because there’s only one value to check) or one or
more individual variables (if you know exactly what you’re looking for). Depending on the
rate of false positives and your default policy, you should decide whether to block or just warn
when the rule is triggered.

The best way to use this variable is as in the following example:

SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"phase:2,t:none,log,deny,msg:'Multipart request body \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

MULTIPART_UNMATCHED_BOUNDARY 283

failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_SEMICOLON_MISSING}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IF %{MULTIPART_INVALID_HEADER_FOLDING}, \
FE %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

MULTIPART_UNMATCHED_BOUNDARY
Set to 1 when, during the parsing phase of a multipart/request-body, ModSecurity encoun-
ters what seems like a boundary but is not. Such an event may occur when evasion of Mod-
Security is attempted.

The best way to use this variable is as in the following:

SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
 "phase:2,t:none,log,deny,\
 msg:'Multipart parser detected a possible unmatched boundary.'"

Change the rule from blocking to logging-only if many false positives are encountered.

OUTBOUND_DATA_ERROR
This variable is a flag that will be raised when ModSecurity is not able to buffer the entire
response body and SecResponseBodyLimitAction is set to ProcessPartial.

PATH_INFO
Contains the extra request URI information, also known as path info. (For example, in the
URI /index.php/123, /123 is the path info.) Available only in embedded deployments.

SecRule PATH_INFO "^/(bin|etc|sbin|opt|usr)"

PERF_ALL
This special variable contains a string that is a combination of all other performance variables,
arranged in the same order as they appear in the Stopwatch2 audit log header. It is intended
for use in custom Apache logs, as described in the section called “Performance Logging”.
Available starting with 2.6.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

284 Chapter 16: Variables

PERF_COMBINED
Contains the time, in microseconds, spent in ModSecurity during the current transaction. The
value in this variable is arrived to by adding all the performance variables except PERF_SREAD
(the time spent reading from persistent storage is already included in the phase measure-
ments). Available starting with 2.6.

PERF_GC
Contains the time, in microseconds, spent performing garbage collection. Available starting
with 2.6.

PERF_LOGGING
Contains the time, in microseconds, spent in audit logging. This value is known only af-
ter the handling of a transaction is finalized, which means that it can only be logged using
mod_log_config and the %{VARNAME}M syntax. Available starting with 2.6.

PERF_PHASE1
Contains the time, in microseconds, spent processing phase 1. Available starting with 2.6.

PERF_PHASE2
Contains the time, in microseconds, spent processing phase 2. Available starting with 2.6.

PERF_PHASE3
Contains the time, in microseconds, spent processing phase 3. Available starting with 2.6.

PERF_PHASE4
Contains the time, in microseconds, spent processing phase 4. Available starting with 2.6.

PERF_PHASE5
Contains the time, in microseconds, spent processing phase 5. Available starting with 2.6.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

PERF_SREAD 285

PERF_SREAD
Contains the time, in microseconds, spent reading from persistent storage. Available starting
with 2.6.

PERF_SWRITE
Contains the time, in microseconds, spent writing to persistent storage. Available starting with
2.6.

QUERY_STRING
Contains the query string part of a request URI. The value in QUERY_STRING is always provided
raw, without URL decoding taking place.

SecRule QUERY_STRING "attack"

REMOTE_ADDR
This variable holds the IP address of the remote client.

SecRule REMOTE_ADDR "^192\.168\.1\.101$"

REMOTE_HOST
If the Apache directive HostnameLookups is set to On, then this variable will hold the remote
hostname resolved through DNS. If the directive is set to Off, this variable it will hold the
remote IP address (same as REMOTE_ADDR). Possible uses for this variable would be to deny
known bad client hosts or network blocks, or conversely, to allow in authorized hosts.

SecRule REMOTE_HOST "\.evil\.network\org$"

REMOTE_PORT
This variable holds information on the source port that the client used when initiating the
connection to our web server.

In the following example, we are evaluating to see whether the REMOTE_PORT is less than 1024,
which would indicate that the user is a privileged user:

SecRule REMOTE_PORT "@lt 1024"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

286 Chapter 16: Variables

REMOTE_USER
This variable holds the username of the authenticated user. If there are no password access
controls in place (Basic or Digest authentication), then this variable will be empty.

SecRule REMOTE_USER "^admin$"

In a reverse-proxy deployment, this information will not be available if the authentication is
handled in the backend web server.

REQBODY_ERROR
New name for REQBODY_PROCESSOR_ERROR, starting with 2.6.0. The old name is now deprecated.

REQBODY_ERROR_MSG
New name for REQBODY_PROCESSOR_ERROR_MSG, starting with 2.6.0. The old name is now dep-
recated.

REQBODY_PROCESSOR
Contains the name of the currently used request body processor. The possible values are UR-
LENCODED, MULTIPART, and XML.

SecRule REQBODY_PROCESSOR "^XML$ chain
SecRule XML "@validateDTD /opt/apache-frontend/conf/xml.dtd"

REQBODY_PROCESSOR_ERROR
Contains the status of the request body processor used for request body parsing. The values
can be 0 (no error) or 1 (error). This variable will be set by request body processors (typically
the multipart/request-data parser or the XML parser) when they fail to do their work.

SecRule REQBODY_PROCESSOR_ERROR "@eq 1" deny,phase:2

Note
Your policies must have a rule to check for request body processor errors at the very
beginning of phase 2. Failure to do so will leave the door open for impedance mis-
match attacks. It is possible, for example, that a payload that cannot be parsed by
ModSecurity can be successfully parsed by more tolerant parser operating in the ap-
plication. If your policy dictates blocking, then you should reject the request if error
is detected. When operating in detection-only mode, your rule should alert with high
severity when request body processing fails.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

REQBODY_PROCESSOR_ERROR_MSG 287

Starting with 2.6.0, you should use REQBODY_ERROR instead.

REQBODY_PROCESSOR_ERROR_MSG
If there’s been an error during request body parsing, the variable will contain the following
error message:

SecRule REQBODY_PROCESSOR_ERROR_MSG "failed to parse"

Starting with 2.6.0, you should use REQBODY_ERROR_MSG instead.

REQUEST_BASENAME
This variable holds just the filename part of REQUEST_FILENAME (e.g., index.php).

SecRule REQUEST_BASENAME "^login\.php$" phase:2,t:none,t:lowercase

Note
Please note that anti-evasion transformations are not applied to this variable by de-
fault. REQUEST_BASENAME will recognise both / and \ as path separators. You should
understand that the value of this variable depends on what was provided in request,
and that it does not have to correspond to the resource (on disk) that will be used
by the web server.

REQUEST_BODY
Holds the raw request body. This variable is available only if the URLENCODED request body
processor was used, which will occur by default when the application/x-www-form-urlen-
coded content type is detected, or if the use of the URLENCODED request body parser was forced.
As of 2.5.7, it is possible to force the presence of the REQUEST_BODY variable, but only when
there is no request body processor defined using the ctl:forceRequestBodyVariable option
in the REQUEST_HEADERS phase.

REQUEST_BODY_LENGTH
Contains the number of bytes read from a request body. Available starting with v2.6.

REQUEST_COOKIES
This variable is a collection of all of request cookies (values only).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

288 Chapter 16: Variables

SecRule &REQUEST_COOKIES "@eq 0"

REQUEST_COOKIES_NAMES
This variable is a collection of the names of all request cookies. For example, the following
rule will trigger if the JSESSIONID cookie is not present:

SecRule &REQUEST_COOKIES_NAMES:JSESSIONID "@eq 0"

REQUEST_FILENAME
This variable holds the relative request URL without the query string part (e.g., /index.php).

SecRule REQUEST_FILENAME "^/cgi-bin/login\.php$" phase:2,t:none,t:normalizePath

Note
Please note that anti-evasion transformations are not used on REQUEST_FILENAME,
which means that you will have to specify them in the rules that use this variable.

REQUEST_HEADERS
This variable can be used as either a collection of all of the request headers or can be used to
inspect selected headers (by using the REQUEST_HEADERS:Header-Name syntax).

SecRule REQUEST_HEADERS:Host "^[\d\.]+$" \
 "deny,log,status:400,msg:'Host header is a numeric IP address'"

REQUEST_HEADERS_NAMES
This variable is a collection of the names of all of the request headers.

SecRule REQUEST_HEADERS_NAMES "^x-forwarded-for" \
 "log,deny,status:403,t:lowercase,msg:'Proxy Server Used'"

REQUEST_LINE
This variable holds the complete request line sent to the server (including the request method
and HTTP version information).

Allow only POST, GET and HEAD request methods, as well as only
the valid protocol versions
SecRule REQUEST_LINE "!(^((?:(?:POS|GE)T|HEAD))|HTTP/(0\.9|1\.0|1\.1)$)" \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

REQUEST_METHOD 289

 "phase:1,log,block,t:none"

REQUEST_METHOD
This variable holds the request method used in the transaction.

SecRule REQUEST_METHOD "^(?:CONNECT|TRACE)$"

REQUEST_PROTOCOL
This variable holds the request protocol version information.

SecRule REQUEST_PROTOCOL "!^HTTP/(0\.9|1\.0|1\.1)$"

REQUEST_URI
This variable holds the full request URL including the query string data (e.g., /index.php?
p=X). However, it will never contain a domain name, even if it was provided on the request line.

SecRule REQUEST_URI "attack" \
 "phase:1,t:none,t:urlDecode,t:lowercase,t:normalizePath"

Note
Please note that anti-evasion transformations are not used on REQUEST_URI, which
means that you will have to specify them in the rules that use this variable.

REQUEST_URI_RAW
Same as REQUEST_URI but will contain the domain name if it was provided on the request line
(e.g., http://www.example.com/index.php?p=X).

SecRule REQUEST_URI_RAW "http:/" \
 "phase:1,t:none,t:urlDecode,t:lowercase,t:normalizePath"

Note
Please note that anti-evasion transformations are not used on REQUEST_URI_RAW,
which means that you will have to specify them in the rules that use this variable.

RESPONSE_BODY
This variable holds the data for the response body, but only when response body buffering
is enabled.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

290 Chapter 16: Variables

SecRule RESPONSE_BODY "ODBC Error Code"

RESPONSE_CONTENT_LENGTH
Response body length in bytes. Can be available starting with phase 3, but it does not have to
be (as the length of response body is not always known in advance). If the size is not known,
this variable will contain a zero. If RESPONSE_CONTENT_LENGTH contains a zero in phase 5 that
means the actual size of the response body was 0. The value of this variable can change between
phases if the body is modified. For example, in embedded mode, mod_deflate can compress
the response body between phases 4 and 5.

RESPONSE_CONTENT_TYPE
Response content type. Available only starting with phase 3. The value available in this variable
is taken directly from the internal structures of Apache, which means that it may contain
the information that is not yet available in response headers. In embedded deployments, you
should always refer to this variable, rather than to RESPONSE_HEADERS:Content-Type.

RESPONSE_HEADERS
This variable refers to response headers, in the same way as REQUEST_HEADERS does to request
headers.

SecRule RESPONSE_HEADERS:X-Cache "MISS"

This variable may not have access to some headers when running in embedded mode. Headers
such as Server, Date, Connection, and Content-Type could be added just prior to sending the
data to the client. This data should be available in phase 5 or when deployed in proxy mode.

RESPONSE_HEADERS_NAMES
This variable is a collection of the response header names.

SecRule RESPONSE_HEADERS_NAMES "Set-Cookie"

The same limitations apply as the ones discussed in RESPONSE_HEADERS.

RESPONSE_PROTOCOL
This variable holds the HTTP response protocol information.

SecRule RESPONSE_PROTOCOL "^HTTP\/0\.9"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

RESPONSE_STATUS 291

RESPONSE_STATUS
This variable holds the HTTP response status code:

SecRule RESPONSE_STATUS "^[45]"

This variable may not work as expected in embedded mode, as Apache sometimes handles
certain requests differently, and without invoking ModSecurity (all other modules).

RULE
This is a special collection that provides access to the id, rev, severity, logdata, and msg fields
of the rule that triggered the action. It can be used to refer to only the same rule in which
it resides.

SecRule &REQUEST_HEADERS:Host "@eq 0" \
 "log,deny,setvar:tx.varname=%{RULE.id}"

SCRIPT_BASENAME
This variable holds just the local filename part of SCRIPT_FILENAME. Not available in proxy
mode.

SecRule SCRIPT_BASENAME "^login\.php$"

SCRIPT_FILENAME
This variable holds the full internal path to the script that will be used to serve the request.
Not available in proxy mode.

SecRule SCRIPT_FILENAME "^/usr/local/apache/cgi-bin/login\.php$"

SCRIPT_GID
This variable holds the numerical identifier of the group owner of the script. Not available
in proxy mode.

SecRule SCRIPT_GID "!^46$"

SCRIPT_GROUPNAME
This variable holds the name of the group owner of the script. Not available in proxy mode.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

292 Chapter 16: Variables

SecRule SCRIPT_GROUPNAME "!^apache$"

SCRIPT_MODE
This variable holds the script’s permissions mode data (e.g., 644). Not available in proxy mode.

Do not allow scripts that can be written to
SecRule SCRIPT_MODE "^(2|3|6|7)$"

SCRIPT_UID
This variable holds the numerical identifier of the owner of the script. Not available in proxy
mode.

Do not run any scripts that are owned
by Apache (Apache's user id is 46)
SecRule SCRIPT_UID "!^46$"

SCRIPT_USERNAME
This variable holds the username of the owner of the script. Not available in proxy mode.

Do not run any scripts owned by Apache
SecRule SCRIPT_USERNAME "^apache$"

SERVER_ADDR
This variable contains the IP address of the server.

SecRule SERVER_ADDR "^192\.168\.1\.100$"

SERVER_NAME
This variable contains the transaction’s hostname or IP address, taken from the request itself
(which means that, in principle, it should not be trusted).

SecRule SERVER_NAME "hostname\.com$"

SERVER_PORT
This variable contains the local port that the web server (or reverse proxy) is listening on.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

SESSION 293

SecRule SERVER_PORT "^80$"

SESSION
This variable is a collection that contains session information. It becomes available only after
setsid is executed.

The following example shows how to initialize SESSION using setsid, how to use setvar to
increase the SESSION.score values, how to set the SESSION.blocked variable, and finally, how
to deny the connection based on the SESSION:blocked value:

Initialize session storage
SecRule REQUEST_COOKIES:PHPSESSID !^$ \
 "phase:2,nolog,pass,setsid:%{REQUEST_COOKIES.PHPSESSID}"

Increment session score on attack
SecRule REQUEST_URI "^/cgi-bin/finger$" \
 "phase:2,t:none,t:lowercase,t:normalizePath,pass,setvar:SESSION.score=+10"

Detect too many attacks in a session
SecRule SESSION:score "@gt 50" \
 "phase:2,pass,setvar:SESSION.blocked=1"

Enforce session block
SecRule SESSION:blocked "@eq 1" \
 "phase:2,deny,status:403"

SESSIONID
This variable contains the value set with setsid. See SESSION (above) for a complete example.

STREAM_INPUT_BODY
This variable contains the raw request body as a single memory buffer. It is not created by
default and needs to be configured using the SecStreamInBodyInspection directive. Available
as of 2.6.0.

STREAM_OUTPUT_BODY
This variable contains the raw response body as a single memory buffer. It is not created by
default and needs to be configured using the SecStreamOutBodyInspection directive. It is not
clear how STREAM_OUTPUT_BODY is different from that of RESPONSE_BODY, except that the @rsub
operator can be used only with the former, at a cost of doubling response buffering memory
usage. Available as of 2.6.0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

294 Chapter 16: Variables

TIME
This variable holds a formatted string representing the time (hour:minute:second).

SecRule TIME "^(([1](8|9))|([2](0|1|2|3))):\d{2}:\d{2}$"

TIME_DAY
This variable holds the current date (1–31). The following rule triggers on a transaction that’s
happening anytime between the 10th and 20th in a month:

SecRule TIME_DAY "^(([1](0|1|2|3|4|5|6|7|8|9))|20)$"

TIME_EPOCH
This variable holds the time in seconds since 1970.

TIME_HOUR
This variable holds the current hour value (0–23). The following rule triggers when a request
is made “off hours”:

SecRule TIME_HOUR "^(0|1|2|3|4|5|6|[1](8|9)|[2](0|1|2|3))$"

TIME_MIN
This variable holds the current minute value (0–59). The following rule triggers during the
last half hour of every hour:

SecRule TIME_MIN "^(3|4|5)"

TIME_MON
This variable holds the current month value (0–11). The following rule matches if the month
is either November (value 10) or December (value 11):

SecRule TIME_MON "^1"

TIME_SEC
This variable holds the current second value (0–59).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

TIME_WDAY 295

SecRule TIME_SEC "@gt 30"

TIME_WDAY
This variable holds the current weekday value (0–6). The following rule triggers only on Satur-
day and Sunday:

SecRule TIME_WDAY "^(0|6)$"

TIME_YEAR
This variable holds the current four-digit year value.

SecRule TIME_YEAR "^2006$"

TX
This is the transient transaction collection, which is used to store pieces of data, create a trans-
action anomaly score, and so on. The variables placed into this collection are available only
until the transaction is complete.

Increment transaction attack score on attack
SecRule ARGS attack \
 "phase:2,nolog,pass,setvar:TX.score=+5"

Block the transactions whose scores are too high
SecRule TX:SCORE "@gt 20" \
 "phase:2,log,deny"

Some variable names in the TX collection are reserved and cannot be used:

• TX:0: the matching value when using the @rx or @pm operator with the capture action

• TX:1-TX:9: the captured subexpression value when using the @rx operator with captur-
ing parentheses and the capture action

• TX:MSC_.*: ModSecurity processing flags

• MSC_PCRE_LIMITS_EXCEEDED: Set to nonzero if PCRE match limits are exceeded. See
SecPcreMatchLimit and SecPcreMatchLimitRecursion for more information.

UNIQUE_ID
Exposes the unique ID assigned to the current transaction by the mod_unique_id Apache mod-
ule.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

296 Chapter 16: Variables

URLENCODED_ERROR
This flag is raised when an invalid URL encoding is encountered during the parsing of a query
string (on every request) or during the parsing of an application/x-www-form-urlencoded
request body (only on the requests that use the URLENCODED request body processor). Available
starting with 2.6.0.

USERID
This variable contains the value set with setuid.

Initialize user tracking
SecAction "nolog,pass,setuid:%{REMOTE_USER}"

Is the current user the administrator?
SecRule USERID "admin"

WEBAPPID
This variable contains the current application name, which is set in configuration using SecWe-
bAppId.

WEBSERVER_ERROR_LOG
Contains zero or more error messages produced by the web server. This variable is best ac-
cessed from phase 5 (logging).

SecRule WEBSERVER_ERROR_LOG "File does not exist" \
 "phase:5,nolog,pass,setvar:TX.score=+5"

XML
Special collection used to interact with the XML parser. It can be used standalone as a target
for the validateDTD and validateSchema operator. Otherwise, it must contain a valid XPath
expression, which will then be evaluated against a previously parsed XML DOM tree.

Parse request body as XML
SecRule REQUEST_HEADERS:Content-Type ^text/xml$ \
 "phase:1,t:lowercase,nolog,pass,ctl:requestBodyProcessor=XML"

Skip over the XML processing rules when not processing XML
SecRule REQBODY_PROCESSOR "!^XML$" \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

XML 297

 "phase:2,nolog,pass,skipAfter:12345"

Run XPath expression
SecRule XML:/employees/employee/name/text() Fred \
 "phase:2,block"

Run XPath expression, with namespace
SecRule XML:/xq:employees/employee/name/text() Fred \
 "phase:2,block,id:12345,xmlns:xq=http://www.example.com/employees"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

298

Property of Girish Motwani <kushalbooks@yahoo.co.in>

299

17 Transformation Functions
Transformation functions are used to alter input data before it is used in matching (i.e., op-
erator execution). The input data is never modified, actually—whenever you request a trans-
formation function to be used, ModSecurity will create a copy of the data, transform it, and
then run the operator against the result.

In the following example, the request parameter values are converted to lowercase before
matching:

SecRule ARGS "xp_cmdshell" "t:lowercase"

Multiple transformation actions can be used in the same rule, forming a transformation
pipeline. The transformations will be performed in the order in which they appear in the rule.

In most cases, the order in which transformations are performed is very important. In the
following example, a series of transformation functions is performed to counter evasion. Per-
forming the transformations in any other order would allow a skillful attacker to evade de-
tection:

SecRule ARGS "(asfunction|javascript|vbscript|data|mocha|livescript):" \
 "t:none,t:htmlEntityDecode,t:lowercase,t:removeNulls,t:removeWhitespace"

Warning
It is currently possible to use SecDefaultAction to specify a default list of transfor-
mation functions, which will be applied to all rules that follow the SecDefaultAction
directive. However, this practice is not recommended, because it means that mistakes
are very easy to make. It is recommended that you always specify the transformation
functions that are needed by a particular rule, starting the list with t:none (which
clears the possibly inherited transformation functions).

The remainder of this section documents the transformation functions currently available in
ModSecurity.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

300 Chapter 17: Transformation Functions

base64Decode
Decodes a Base64-encoded string.

base64DecodeExt
Decodes a Base64-encoded string. Unlike base64Decode, this version uses a forgiving imple-
mentation, which ignores invalid characters. Available as of 2.6.0. This transformation func-
tion was actually introduced in 2.5.13 under the name decodeBase64Ext.

base64Encode
Encodes input string using Base64 encoding.

cmdLine
Performs several transformations that simulate how input would be treated in an attack aimed
at command execution:

1. Delete backslash characters

2. Delete double quote characters

3. Delete single quote characters

4. Delete caret characters

5. Delete whitespace before a forward slash character

6. Delete whitespace before an open parenthesis character

7. Replace each comma with a space

8. Replace each semicolon with a space

9. Compress multiple spaces (any of 0x20, \t, \r, and \n) into a single space (0x20) char-
acter

10.Convert all characters to lowercase

Contributed to ModSecurity by Marc Stern [http://www.linkedin.com/in/marcstern]. Avail-
able as of 2.6.0.

compressWhitespace
Converts any of the whitespace characters (0x20, \f, \t, \n, \r, \v, 0xa0) to spaces (ASCII
0x20), compressing multiple consecutive space characters into one.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.linkedin.com/in/marcstern
http://www.linkedin.com/in/marcstern

cssDecode 301

cssDecode
Decodes characters encoded using the CSS 2.x escape rules [http://www.w3.org/TR/CSS2/
syndata.html#characters]. This function uses only up to two bytes in the decoding process,
meaning that it is useful to uncover ASCII characters encoded using CSS encoding (that
wouldn’t normally be encoded), or to counter evasion, which is a combination of a backslash
and non-hexadecimal characters (e.g., ja\vascript is equivalent to javascript).

decodeBase64Ext
Decodes a Base64-encoded string. Unlike base64Decode, this version uses a forgiving imple-
mentation, which ignores invalid characters. Available as of 2.5.13. In 2.6.0, it was renamed
to base64DecodeExt to use a name that is in line with other transformation functions.

escapeSeqDecode
Decodes ANSI C escape sequences: \a, \b, \f, \n, \r, \t, \v, \\, \?, \', \", \xHH (hexadecimal),
\0OOO (octal). Invalid encodings are left in the output.

hexDecode
Decodes a string that has been encoded using the same algorithm as the one used in hexEncode
(see following entry).

hexEncode
Encodes string (possibly containing binary characters) by replacing each input byte with two
hexadecimal characters. For example, xyz is encoded as 78797a.

htmlEntityDecode
Decodes the characters encoded as HTML entities. The following variants are supported:

• &#xHH and &#xHH; (where H is any hexadecimal number)

• &#DDD and &#DDD; (where D is any decimal number)

• " and "

• and

• < and <

• > and >

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.w3.org/TR/CSS2/syndata.html#characters
http://www.w3.org/TR/CSS2/syndata.html#characters
http://www.w3.org/TR/CSS2/syndata.html#characters

302 Chapter 17: Transformation Functions

This function always converts one HTML entity into one byte, possibly resulting in a loss of
information (if the entity refers to a character that cannot be represented with the single byte).
It is thus useful to uncover bytes that would otherwise not need to be encoded, but it cannot
do anything meaningful with the characters from the range above 0xff.

jsDecode
Decodes JavaScript escape sequences. If a \uHHHH code is in the range of FF01-FF5E (the full
width ASCII codes), then the higher byte is used to detect and adjust the lower byte. Other-
wise, only the lower byte will be used and the higher byte zeroed (leading to possible loss of
information).

length
Looks up the length of the input string in bytes, placing it (as string) in output. For example,
if it gets ABCDE on input, this transformation function will return 5 on output.

lowercase
Converts all characters to lowercase using the current C locale.

md5
Calculates an MD5 hash from the data in input. The computed hash is in a raw binary form
and may need encoded into text to be printed (or logged). Hash functions are commonly used
in combination with hexEncode (for example: t:md5,t:hexEncode).

none
Not an actual transformation function, but an instruction to ModSecurity to remove all trans-
formation functions associated with the current rule.

normalisePath
Removes multiple slashes, directory self-references, and directory back-references (except
when at the beginning of the input) from input string.

normalisePathWin
Same as normalisePath, but first converts backslash characters to forward slashes.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

normalizePath 303

normalizePath
Alias for normalisePath, available starting with 2.6.0.

normalizePathWin
Alias for normalisePathWin, available starting with 2.6.0.

parityEven7bit
Calculates even parity of 7-bit data replacing the 8th bit of each target byte with the calculated
parity bit.

parityOdd7bit
Calculates odd parity of 7-bit data replacing the 8th bit of each target byte with the calculated
parity bit.

parityZero7bit
Calculates zero parity of 7-bit data replacing the 8th bit of each target byte with a zero-parity
bit, which allows inspection of even/odd parity 7-bit data as ASCII7 data.

removeComments
This transformation function will remove comments that start with /* and end with */ but
replace # and -- occurrences with spaces elsewhere. Available as of 2.6.2.

removeCommentsChar
Removes characters and character combinations typically used to create comments: /*, */,
--, and #. Available as of 2.6.2.

removeNulls
Removes all NUL bytes from input.

removeWhitespace
Removes all whitespace characters from input.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

304 Chapter 17: Transformation Functions

replaceComments
Replaces each occurrence of a C-style comment (/* ... */) with a single space (multiple
consecutive occurrences of which will not be compressed). Unterminated comments will also
be replaced with a space (ASCII 0x20). However, a standalone termination of a comment (*/)
will not be acted upon.

replaceNulls
Replaces NUL bytes in input with space characters (ASCII 0x20).

urlDecode
Decodes a URL-encoded input string. Invalid encodings (i.e., the ones that use non-hexadec-
imal characters, or the ones that are at the end of string and have one or two bytes missing)
are not converted, but no error is raised. To detect invalid encodings, use the @validateUr-
lEncoding operator on the input data first. The transformation function should not be used
against variables that have already been URL-decoded (such as request parameters) unless it
is your intention to perform URL decoding twice!

urlDecodeUni
Like urlDecode, but with support for the Microsoft-specific %u encoding. If the code is in the
range of FF01-FF5E (the full-width ASCII codes), then the higher byte is used to detect and
adjust the lower byte. If SecUnicodeMapFile and SecUnicodeCodePage were used, the 2-byte
Unicode code point will be converted into a single byte using best-effort mapping. If these
directives were not used, or if you are using a version of ModSecurity previous to 2.6.1, only
the lower byte will be used and the higher byte will be ignored.

urlEncode
Encodes input string using URL encoding.

sha1
Calculates a SHA1 hash from the input string. The computed hash is in a raw binary form and
may need encoded into text to be printed (or logged). Hash functions are commonly used in
combination with hexEncode (for example, t:sha1,t:hexEncode).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

sqlHexDecode 305

sqlHexDecode
Decodes SQL-style hex encodings in strings. For example, the fragment 0x414141 will be con-
verted to AAA. Contributed by Marc Stern [http://www.linkedin.com/in/marcstern]. Available
as of 2.6.3.

trimLeft
Removes whitespace from the left side of the input string.

trimRight
Removes whitespace from the right side of the input string.

trim
Removes whitespace from both the left and right sides of the input string.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.linkedin.com/in/marcstern
http://www.linkedin.com/in/marcstern

306

Property of Girish Motwani <kushalbooks@yahoo.co.in>

307

18 Actions
This section documents the actions currently available in ModSecurity.

allow
Stops rule processing.

Allow unrestricted access from 192.168.1.100
SecRule REMOTE_ADDR "^192\.168\.1\.100$" phase:1,nolog,allow

Prior to ModSecurity 2.5, the allow action would affect only the processing of the phase in
which it is executed. An allow in phase 1 would skip the processing of the remaining rules in
phase 1, but the rules from phase 2 would execute as normal. Starting with version 2.5.0, allow
was enhanced to enable fine-grained control of what is done. The following rules now apply:

1. If used on its own, like in the previous example, allow will affect the entire transac-
tion, stopping processing of the current phase but also skipping over all other phases
apart from the logging phase. (The logging phase is special; it is designed to always ex-
ecute.)

2. If used with parameter “phase,” allow will cause the engine to stop processing the cur-
rent phase. Other phases will continue as normal.

3. If used with parameter “request,” allow will cause the engine to stop processing the
current phase. The next phase to be processed will be the phase RESPONSE_HEADERS.

Examples:

Do not process request but process response
SecAction phase:1,nolog,allow:request

Do not process transaction (request and response)
SecAction phase:1,nolog,allow

If you want to allow a response through, put a rule into the RESPONSE_HEADERS phase and
simply use allow on its own:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

308 Chapter 18: Actions

Allow response through.
SecAction phase:3,nolog,allow

append
Appends text given as parameter to the end of response body. Content injection must be en-
abled (using the SecContentInjection directive). No content type checks are made, which
means that before using any of the content injection actions, you must check whether the
content type of the response is adequate for injection.

The following rule injects content into the response body after checking its content type:

SecRule RESPONSE_CONTENT_TYPE "^text/html" "nolog,pass,append:'<hr>Footer'"

Warning
Although macro expansion is allowed in the additional content, you are strongly cau-
tioned against inserting user-defined data fields into output. Doing so would create
a cross-site scripting vulnerability.

auditlog
Marks the current transaction to be logged in the audit log.

Always log transactions from 192.168.1.100
SecRule REMOTE_ADDR "^192\.168\.1\.100$" phase:1,nolog,auditlog

block
Performs the default disruptive action.

This action is essentially a placeholder that is intended to be used by rule writers to request a
blocking action, but without specifying how the blocking is to be done. The idea is that such
decisions are best left to rule users, as well as to allow users, to override blocking if they so
desire.

Specify how blocking is to be done
SecDefaultAction phase:2,deny,status:403,log,auditlog

Detect attacks where we want to block
SecRule ARGS attack1 phase:2,block

Detect attacks where we want only to warn
SecRule ARGS attack2 phase:2,pass

It is possible to use the SecRuleUpdateActionById directive to override how a rule handles
blocking. This is useful in three cases:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

capture 309

• If a rule has blocking hard-coded, and you want it to use the policy you determine

• If a rule was written to block, but you want it to only warn

• If a rule was written to only warn, but you want it to block

The following example demonstrates the first case, in which the hard-coded block is removed
in favor of the user-controllable block:

Specify how blocking is to be done
SecDefaultAction phase:2,deny,status:403,log,auditlog

Detect attacks and block
SecRule ARGS attack1 phase:2,id:1,deny

Change how rule ID 1 blocks
SecRuleUpdateActionById 1 block

capture
When used together with the regular expression operator (@rx), the capture action will create
copies of the regular expression captures and place them into the transaction variable collec-
tion.

SecRule REQUEST_BODY "^username=(\w{25,})" \
 phase:2,capture,t:none,chain
SecRule TX:1 "(?:(?:a(dmin|nonymous)))"

Up to 10 captures will be copied on a successful pattern match, each with a name consisting of
a digit from 0 to 9. The TX.0 variable always contains the entire area that the regular expres-
sion matched. All the other variables contain the captured values, in the order in which the
capturing parentheses appear in the regular expression.

chain
Chains the current rule with the rule that immediately follows it, creating a rule chain. Chained
rules allow for more complex processing logic.

Refuse to accept POST requests that do not contain Content-Length header.
(Do note that this rule should be preceded by a rule
that verifies only valid request methods are used.)
SecRule REQUEST_METHOD "^POST$" phase:1,chain,t:none
SecRule &REQUEST_HEADERS:Content-Length "@eq 0" t:none

Note
Rule chains allow you to simulate logical AND. The disruptive actions specified in
the first portion of the chained rule will be triggered only if all of the variable checks

Property of Girish Motwani <kushalbooks@yahoo.co.in>

310 Chapter 18: Actions

return positive hits. If any one aspect of a chained rule comes back negative, then
the entire rule chain will fail to match. Also note that disruptive actions, execution
phases, metadata actions (id, rev, msg), skip, and skipAfter actions can be specified
only by the chain starter rule.

The following directives can be used in rule chains:

• SecAction

• SecRule

• SecRuleScript

Special rules control the usage of actions in chained rules:

• Any actions that affect the rule flow (i.e., the disruptive actions, skip and skipAfter)
can be used only in the chain starter. They will be executed only if the entire chain
matches.

• Non-disruptive rules can be used in any rule; they will be executed if the rule that con-
tains them matches and not only when the entire chain matches.

• The metadata actions (e.g., id, rev, msg) can be used only in the chain starter.

ctl
Changes ModSecurity configuration on transient, per-transaction basis. Any changes made
using this action will affect only the transaction in which the action is executed. The default
configuration, as well as the other transactions running in parallel, will be unaffected.

Parse requests with Content-Type "text/xml" as XML
SecRule REQUEST_CONTENT_TYPE ^text/xml \
 "nolog,pass,ctl:requestBodyProcessor=XML"

The following configuration options are supported:

1. auditEngine

2. auditLogParts

3. debugLogLevel

4. requestBodyAccess

5. forceRequestBodyVariable

6. requestBodyLimit

7. requestBodyProcessor

8. responseBodyAccess

Property of Girish Motwani <kushalbooks@yahoo.co.in>

deny 311

9. responseBodyLimit

10. ruleEngine

11. ruleRemoveById

12. ruleRemoveByTag

With the exception of the requestBodyProcessor and forceRequestBodyVariable settings,
each configuration option corresponds to one configuration directive and the usage is iden-
tical.

The requestBodyProcessor option allows you to configure the request body processor. By de-
fault, ModSecurity will use the URLENCODED and MULTIPART processors to process an applica-
tion/x-www-form-urlencoded and a multipart/form-data body, respectively. A third proces-
sor, XML, is also supported, but it is never used implicitly. Instead, you must tell ModSecurity
to use it by placing a few rules in the REQUEST_HEADERS processing phase. After the request
body is processed as XML, you will be able to use the XML-related features to inspect it.

Request body processors will not interrupt a transaction if an error occurs
during parsing. Instead, they will set the variables REQBODY_PROCESSOR_ERROR and
REQBODY_PROCESSOR_ERROR_MSG. These variables should be inspected in the REQUEST_BODY
phase and an appropriate action taken.

The forceRequestBodyVariable option allows you to configure the REQUEST_BODY variable to
be set when there is no request body processor configured. This allows for inspection of re-
quest bodies of unknown types.

deny
Stops rule processing and intercepts transaction.

SecRule REQUEST_HEADERS:User-Agent "nikto" \
 "phase:1,log,deny,msg:'Nikto Scanners Identified'"

deprecatevar
Decrements numerical value over time, which makes sense only applied to the variables stored
in persistent storage.

The following example will decrement the counter by 60 every 300 seconds.

SecAction phase:5,nolog,pass,deprecatevar:SESSION.score=60/300

Counter values are always positive, meaning that the value will never go below zero. Unlike
expirevar, the deprecate action must be executed on every request.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

312 Chapter 18: Actions

drop
Initiates an immediate close of the TCP connection by sending a FIN packet.

SecRule ARGS attack "phase:2,drop,msg:'TCP connection dropped'"

This action is currently not available on Windows-based builds. This action is extremely
useful when responding to both brute force and denial of service attacks, when you want
to minimize both the network bandwidth and the data returned to the client. This action
causes the following error message to appear in the Apache log: (9)Bad file descriptor:
core_output_filter: writing data to the network.

exec
Executes the external program specified in the parameter. As of version 2.5.0, if the parameter
supplied to exec is a Lua script (detected by the .lua extension), the script will be processed
internally. This means that you will get direct access to the internal request context from the
script. Please read the SecRuleScript documentation for more details on how to write Lua
scripts.

Run external program on rule match
SecRule REQUEST_URI "^/cgi-bin/script\.pl" \
 "phase:2,t:none,t:lowercase,t:normalizePath,block,\
 exec:/usr/local/apache/bin/test.sh"

Run Lua script on rule match
SecRule ARGS:p attack \
 "phase:2,block,exec:/usr/local/apache/conf/exec.lua"

The exec action is executed independently from any disruptive actions specified. External
scripts will always be called with no parameters. Some transaction information will be placed
in environment variables. All the usual CGI environment variables will be there. You should be
aware that forking a threaded process results in all threads being replicated in the new process.
Forking can therefore incur larger overhead in a multithreaded deployment. The script you
execute must write something (anything) to stdout; if it doesn’t, ModSecurity will assume
that the script failed, and will record the failure.

expirevar
Configures a collection variable to expire after the given time period (in seconds).

SecRule REQUEST_COOKIES:JSESSIONID "!^$" nolog,phase:1,pass,chain
SecAction setsid:%{REQUEST_COOKIES:JSESSIONID}
SecRule REQUEST_URI "^/cgi-bin/script\.pl" \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

id 313

 "phase:2,t:none,t:lowercase,t:normalizePath,log,allow,\
setvar:session.suspicious=1,expirevar:session.suspicious=3600,phase:1"

You should use the expirevar actions at the same time that you use setvar actions in order
to keep the indented expiration time. If they are used on their own (perhaps in a SecAction
directive), the expire time will be reset.

id
Assigns a unique ID to the rule or chain in which it appears.

SecRule &REQUEST_HEADERS:Host "@eq 0" \
 "phase:2,id:60008,severity:2,msg:'Request Missing a Host Header'"

These are the reserved ID ranges:

• 1–99,999: reserved for local (internal) use. Use as you see fit, but do not use this range
for rules that are distributed to others

• 100,000–199,999: reserved for internal use of the engine, to assign to rules that do not
have explicit IDs

• 200,000–299,999: reserved for rules published at modsecurity.org

• 300,000–399,999: reserved for rules published at gotroot.com

• 400,000–419,999: unused (available for reservation)

• 420,000–429,999: reserved for ScallyWhack [http://projects.otaku42.de/wiki/Scally-
Whack]

• 430,000–699,999: unused (available for reservation)

• 700,000–799,999: reserved for Ivan Ristić

• 900,000–999,999: reserved for the Core Rules [http://www.modsecurity.org/projects/
rules/] project

• 1,000,000 and above: unused (available for reservation)

initcol
Initializes a named persistent collection, either by loading data from storage or by creating a
new collection in memory.

The following example initiates IP address tracking, which is best done in phase 1:

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}

Collections are loaded into memory on-demand, when the initcol action is executed. A col-
lection will be persisted only if a change was made to it in the course of transaction process-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://projects.otaku42.de/wiki/ScallyWhack
http://projects.otaku42.de/wiki/ScallyWhack
http://projects.otaku42.de/wiki/ScallyWhack
http://www.modsecurity.org/projects/rules/
http://www.modsecurity.org/projects/rules/
http://www.modsecurity.org/projects/rules/

314 Chapter 18: Actions

ing. In ModSecurity versions prior to 2.6.3, collection names (as used in initcol only) are
case sensitive, which means that you if you initially create a collection named ip (lowercase)
but later change the name to IP (uppercase), you’d be starting from scratch. The old collec-
tion would remain on disk, unused. This problem affected only systems with case-sensitive
filesystems.

log
Indicates that a successful match of the rule needs to be logged.

SecAction phase:1,initcol:ip=%{REMOTE_ADDR},log,pass

This action will log matches to the Apache error log file and the ModSecurity audit log.

logdata
Logs a data fragment as part of the alert message.

SecRule ARGS:p "@rx <script>" "phase:2,log,pass,logdata:%{MATCHED_VAR}"

The logdata information appears in the error and/or audit log files. Macro expansion is pre-
formed, so you may use variable names such as %{TX.0} or %{MATCHED_VAR}. The information
is properly escaped for use with logging of binary data.

msg
Assigns a custom message to the rule or chain in which it appears. The message will be logged
along with every alert.

SecRule &REQUEST_HEADERS:Host "@eq 0" \
 "phase:1,id:60008,severity:2,msg:'Request Missing a Host Header'"

multiMatch
If enabled, ModSecurity will perform multiple operator invocations for every target, before
and after every anti-evasion transformation is performed.

SecRule ARGS "attack" \
 phase1,log,deny,t:removeNulls,t:lowercase,multiMatch

Normally, variables are inspected only once per rule, and only after all transformation func-
tions have been completed. With multiMatch, variables are checked against the operator be-
fore and after every transformation function that changes the input.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

noauditlog 315

noauditlog
Indicates that a successful match of the rule should not be used as criteria to determine
whether the transaction should be logged to the audit log.

SecRule REQUEST_HEADERS:User-Agent "Test" \
 "allow,noauditlog"

If the SecAuditEngine is set to On, all of the transactions will be logged. If it is set to Relevan-
tOnly, then you can control the logging with the noauditlog action.

The noauditlog action affects only the current rule. If you prevent audit logging in one
rule only, a match in another rule will still cause audit logging to take place. If you want
to prevent audit logging from taking place, regardless of whether any rule matches, use
ctl:auditEngine=Off.

nolog
Prevents rule matches from appearing in both the error and audit logs.

SecRule REQUEST_HEADERS:User-Agent "Test" \
 "allow,nolog"

Although nolog implies noauditlog, you can override the former by using nolog,auditlog.

pass
Continues processing with the next rule in spite of a successful match.

SecRule REQUEST_HEADERS:User-Agent "Test" \
 "log,pass"

When using pass with a SecRule with multiple targets, all variables will be inspected and all
non-disruptive actions trigger for every match. In the following example, the TX.test variable
will be incremented once for every request parameter:

Set TX.test to zero
SecAction "phase:2,nolog,pass,setvar:TX.test=0"

Increment TX.test for every request parameter
SecRule ARGS "test" "phase:2,log,pass,setvar:TX.test=+1"

pause
Pauses transaction processing for the specified number of milliseconds.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

316 Chapter 18: Actions

SecRule REQUEST_HEADERS:User-Agent "Test" \
 "log,deny,status:403,pause:5000"

Warning
This feature can be of limited benefit for slowing down brute force authentication
attacks, but use with care. If you are under a denial of service attack, the pause feature
may make matters worse, as it will cause an entire Apache worker (process or thread,
depending on the deployment mode) to sit idle until the pause is completed.

phase
Places the rule or chain into one of five available processing phases. It can also be used in
SecDefaultAction to establish the rule defaults.

Initialize IP address tracking in phase 1
SecAction phase:1,nolog,pass,initcol:IP=%{REMOTE_ADDR}

Keep in mind that if you specify the incorrect phase, the variable used in the rule may not
yet be available. This could lead to a false negative situation where your variable and operator
may be correct, but it misses malicious data because you specified the wrong phase.

prepend
Prepends the text given as parameter to response body. Content injection must be enabled
(using the SecContentInjection directive). No content type checks are made, which means
that before using any of the content injection actions, you must check whether the content
type of the response is adequate for injection.

SecRule RESPONSE_CONTENT_TYPE ^text/html \
 "phase:3,nolog,pass,prepend:'Header
'"

Note
Although macro expansion is allowed in the injected content, you are strongly cau-
tioned against inserting user defined data fields int output. Doing so would create a
cross-site scripting vulnerability.

proxy
Intercepts the current transaction by forwarding the request to another web server using the
proxy backend. The forwarding is carried out transparently to the HTTP client (i.e., there’s
no external redirection taking place).

SecRule REQUEST_HEADERS:User-Agent "Test" \

Property of Girish Motwani <kushalbooks@yahoo.co.in>

redirect 317

 "phase:1,log,proxy:http://www.example.com"/

For this action to work, mod_proxy must also be installed. This action is useful if you would
like to proxy matching requests onto a honeypot web server, and especially in combination
with IP address or session tracking.

redirect
Intercepts transaction by issuing an external (client-visible) redirection to the given location.

SecRule REQUEST_HEADERS:User-Agent "Test" \
 "phase:1,log,redirect:http://www.example.com/failed.html"

If the status action is present on the same rule, and its value can be used for a redirection
(i.e., is one of the following: 301, 302, 303, or 307), the value will be used for the redirection
status code. Otherwise, status code 302 will be used.

rev
Specifies rule revision. It is useful in combination with the id action to provide an indication
that a rule has been changed.

SecRule REQUEST_METHOD "^PUT$" \
 "phase:1,id:340002,rev:1,severity:2,msg:'Restricted HTTP function'"

sanitiseArg
Prevents sensitive request parameter data from being logged to audit log. Each byte of the
named parameter(s) is replaced with an asterisk.

Never log passwords
SecAction "nolog,phase:2,sanitiseArg:password,\
 sanitiseArg:newPassword,sanitiseArg:oldPassword"

Warning
The sanitise family of actions affect the data only as it is logged to audit log. High-
level debug logs may contain sensitive data. Apache access log may contain sensitive
data from the request URI.

sanitiseMatched
Prevents the matched variable (request argument, request header, or response header) from
being logged to audit log. Each byte of the named parameter(s) is replaced with an asterisk.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

318 Chapter 18: Actions

Do not log any parameter that contains "password" in name
SecRule ARGS_NAMES password "nolog,pass,sanitizeMatched"

sanitiseMatchedBytes
In combination with an operator based on regular expressions (e.g., @rx, verifyCPF, verifyCC,
verifySSN), sanitizeMatchedBytes performs partial sanitization, hiding just the variable part
that matched. Specifying capture in the same rule is required for the correct operation.

SecRule ARGS "@tx test" nolog,phase:2,pass,sanitizeMatchedBytes,capture

With an optional parameter, sanitizeMatchedBytes can leave some of the matched bytes in-
tact. This behavior could be useful if, for example, you wanted to preserve some of the credit
card digits in order to be able to identify the credit card.

SecRule ARGS "@verifyCC \d{13,16}" nolog,phase:2,pass,sanitizeMatchedBytes:4/4,capture

Available as of version 2.6.0.

sanitiseRequestHeader
Prevents a named request header from being logged to audit log. Each byte of the named
request header is replaced with an asterisk.

SecAction "phase:1,nolog,pass,sanitiseRequestHeader:Authorization"

sanitiseResponseHeader
Prevents a named response header from being logged to audit log. Each byte of the named
response header is replaced with an asterisk.

SecAction "phase:3,nolog,pass,sanitiseResponseHeader:Set-Cookie"

sanitizeArg
Alias for sanitiseArg. Available starting with 2.6.0.

sanitizeMatched
Alias for sanitiseMatched. Available starting with 2.6.0.

sanitizeMatchedBytes
Alias for sanitiseMatchedBytes. Available starting with 2.6.0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

sanitizeRequestHeader 319

sanitizeRequestHeader
Alias for sanitiseRequestHeader. Available starting with 2.6.0.

sanitizeResponseHeader
Alias for sanitiseResponseHeader. Available starting with 2.6.0.

severity
Assigns severity to the rule in which it is used.

SecRule REQUEST_METHOD "^PUT$" \
 "id:340002,rev:1,severity:CRITICAL,msg:'Restricted HTTP function'"

Severity values in ModSecurity follow those of syslog, as shown in Table 18.1, “Severity val-
ues”.

Table 18.1. Severity values

Severity Name

0 EMERGENCY

1 ALERT

2 CRITICAL

3 ERROR

4 WARNING

5 NOTICE

6 INFO

7 DEBUG

It is possible to specify severity levels using either the numerical values or the text values,
but you should always specify severity levels using the text values, because it is difficult to
remember what a number stands for. The use of the numerical values is deprecated as of
version 2.5.0 and may be removed in one of the subsequent major updates.

setuid
Special-purpose action that initializes the USER collection using the username provided as
parameter.

SecAction "phase:1,nolog,pass,setuid:%{REMOTE_USER}"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

320 Chapter 18: Actions

After initialization takes place, the variable USERID will be available for use in the subsequent
rules. This action understands application namespaces (configured using SecWebAppId), and
will use one if it is configured.

setsid
Special-purpose action that initializes the SESSION collection using the session token provided
as parameter.

Initialise session variables using the session cookie value
SecRule REQUEST_COOKIES:PHPSESSID "!^$" \
 "phase:2,chain,nolog,pass\
 setsid:%{REQUEST_COOKIES.PHPSESSID}"

After the initialization takes place, the variable SESSIONID will be available for use in the sub-
sequent rules. This action understands application namespaces (configured using SecWebAp-
pId), and will use one if it is configured.

setenv
Creates, removes, and updates environment variables.

To create a new variable and set its value to 1 (usually used for setting flags), use:

setenv:name

To create a variable and choose its value, use:

setenv:name=value

To remove a variable, use:

setenv:!name

setvar
Creates, removes, or updates a variable. Variable names are case-insensitive.

To create a variable and set its value to 1 (usually used for setting flags), use:

setvar:TX.score

To create a variable and initialize it at the same time, use:

setvar:TX.score=10

To remove a variable prefix the name with exclamation mark, use:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

skip 321

setvar:!TX.score

To increase or decrease variable value, use + and - characters in front of a numerical value:

setvar:TX.score=+5

skip
Skips one or more rules (or chains) on a successful match.

Example:

Require Accept header, but not from access from the localhost
SecRule REMOTE_ADDR "^127\.0\.0\.1$" "phase:1,skip:1"
This rule will be skipped over when REMOTE_ADDR is 127.0.0.1
SecRule &REQUEST_HEADERS:Accept "@eq 0" \
 "phase:1,deny,msg:'Request Missing an Accept Header'"

The skip action works only within the current processing phase and not necessarily in the
order in which the rules appear in the configuration file. If you place a phase 2 rule after a
phase 1 rule that uses skip, it will not skip over the phase 2 rule. It will skip over the next
phase 1 rule that follows it in the phase.

skipAfter
Skips one or more rules (or chains) on a successful match, resuming rule execution with the
first rule that follows the rule (or marker created by SecMarker) with the provided ID.

The following rules implement the same logic as the skip example, but using skipAfter:

Require Accept header, but not from access from the localhost
SecRule REMOTE_ADDR "^127\.0\.0\.1$" "phase:1,skipAfter:IGNORE_LOCALHOST"
This rule will be skipped over when REMOTE_ADDR is 127.0.0.1
SecRule &REQUEST_HEADERS:Accept "@eq 0" \
 "phase:1,deny,msg:'Request Missing an Accept Header'"
SecMarker IGNORE_LOCALHOST

The skipAfter action works only within the current processing phase and not necessarily the
order in which the rules appear in the configuration file. If you place a phase 2 rule after a
phase 1 rule that uses skip, it will not skip over the phase 2 rule. It will skip over the next
phase 1 rule that follows it in the phase.

status
Specifies the response status code to use with the actions deny and redirect.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

322 Chapter 18: Actions

Deny with status 403
SecDefaultAction "phase:1,log,deny,status:403"

t
This action is used to specify the transformation pipeline to use to transform the value of each
variable used in the rule before matching.

SecRule ARGS "(asfunction|javascript|vbscript|data|mocha|livescript):" \
 "t:none,t:htmlEntityDecode,t:lowercase,t:removeNulls,t:removeWhitespace"

Any transformation functions that you specify in a SecRule will be added to the previous ones
specified in SecDefaultAction. It is recommended that you always use t:none in your rules,
which prevents them depending on the default configuration.

tag
Assigns a tag (category) to a rule or a chain.

SecRule REQUEST_FILENAME "\b(?:n(?:map|et|c)|w(?:guest|sh)|cmd(?:32)?|telnet|rcmd|…
ftp)\.exe\b" \
 "t:none,t:lowercase,deny,msg:'System Command Access',id:'950002',\
 tag:'WEB_ATTACK/FILE_INJECTION',tag:'OWASP/A2',severity:'2'"

The tag information appears along with other rule metadata. The purpose of the tagging
mechanism to allow easy automated categorization of events. Multiple tags can be specified
on the same rule. Use forward slashes to create a hierarchy of categories (as in the example).

xmlns
Configures an XML namespace, which will be used in the execution of XPath expressions.

SecRule XML:/soap:Envelope/soap:Body/q1:getInput/id() "123" \
 "phase:2,deny,xmlns:xsd=http://www.w3.org/2001/XMLSchema"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

323

19 Operators
This section documents the operators currently available in ModSecurity.

beginsWith
Returns true if the parameter string is found at the beginning of the input. Macro expansion
is performed on the parameter string before comparison.

Detect request line that does not begin with "GET"
SecRule REQUEST_LINE "!@beginsWith GET"

contains
Returns true if the parameter string is found anywhere in the input. Macro expansion is per-
formed on the parameter string before comparison.

Detect ".php" anywhere in the request line
SecRule REQUEST_LINE "!@contains .php" \

endsWith
Returns true if the parameter string is found at the end of the input. Macro expansion is
performed on the parameter string before comparison.

Detect request line that does not end with "HTTP/1.1"
SecRule REQUEST_LINE "!@endsWith HTTP/1.1"

eq
Performs numerical comparison and returns true if the input value is equal to the provided
parameter. Macro expansion is performed on the parameter string before comparison.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

324 Chapter 19: Operators

Detect exactly 15 request headers
SecRule &REQUEST_HEADERS_NAMES "@eq 15"

ge
Performs numerical comparison and returns true if the input value is greater than or equal
to the provided parameter. Macro expansion is performed on the parameter string before
comparison.

Detect 15 or more request headers
SecRule &REQUEST_HEADERS_NAMES "@ge 15"

geoLookup
Performs a geolocation lookup using the IP address in input against the geolocation database
previously configured using SecGeoLookupDb. If the lookup is successful, the obtained infor-
mation is captured in the GEO collection.

The geoLookup operator matches on success and is thus best used in combination with
nolog,pass. If you wish to block on a failed lookup (which may be over the top, depending
on how accurate the geolocation database is), the following example demonstrates how best
to do it:

Configure geolocation database
SecGeoLookupDb /path/to/GeoLiteCity.dat
...
Lookup IP address
SecRule REMOTE_ADDR "@geoLookup" "phase:1,nolog,pass"

Block IP address for which geolocation failed
SecRule &GEO "@eq 0" "phase:1,deny,msg:'Failed to lookup IP'"

See the GEO variable for more information on the various fields available.

gsbLookup
Performs a lookup against one of the databases from the Google’s Safe Browsing project
[http://code.google.com/apis/safebrowsing/]. Before you can use this operator, you must
configure the database using the SecGsbLookupDb directive. The gsbLookup operator does not
work with URLs directly; rather, it takes a regular expression as its parameter and uses it to
extract URLs from the target variables specified in the rule. The regular expression must have
a capture defined, crafted in such way to include only URL hostname and path (and not the
protocol name). On a successful match, the contents of that capture will be looked up against
the Safe Browsing database.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/

gt 325

For example, you could use the following rule to look for and test any URLs that appear in
request parameters:

Configure Safe Browsing database
SecGsbLookupDb /path/to/goog-hash-malware.dat

Check input parameters for malware URLs
SecRule ARGS "@gsbLookup https?://(\S+)" \
 "phase:2,deny,msg:'GSB malware URL detected'"

On a successful match, the URL that was looked up will be part of the error message generated
by the engine. If you want to do something with the URL, you can specify the capture action,
after which the URL will be placed in TX.0. For example, it is a good idea to generate a link
for the analyst to follow to learn more about the problem:

Check input parameters for malware URLs
SecRule ARGS "@gsbLookup https?://(\S+)" \
 "phase:2,deny,capture, \
 msg:'GSB malware URL detected: \
http://www.google.com/safebrowsing/diagnostic?site=%{TX.0}'"

The following URL will come in handy if you want to test your configuration:

http://malware.testing.google.test/testing/malware/

The quality of the rules that use @gsbLookup is directly related to the quality of the regular ex-
pressions that are used to extract the URLs. Further, even with very good regular expressions,
such approach to URL extraction is imperfect and prone to evasion, especially because most
HTML parsers are complex and very forgiving.

The gsbLookup parameter was added in ModSecurity 2.6.

gt
Performs numerical comparison and returns true if the input value is greater than the operator
parameter. Macro expansion is performed on the parameter string before comparison.

Detect more than 15 headers in a request
SecRule &REQUEST_HEADERS_NAMES "@gt 15"

inspectFile
Executes an external program for every variable in the target list. The contents of the variable
are provided to the script as the first parameter on the command line. The program must be
specified as the first parameter to the operator. As of version 2.5.0, if the supplied program

Property of Girish Motwani <kushalbooks@yahoo.co.in>

326 Chapter 19: Operators

filename is not absolute, it is treated as relative to the directory in which the configuration
file resides. Also as of 2.5.0, if the filename is determined to be a Lua script (based on its .lua
extension), the script will be processed by the internal Lua engine. Internally processed scripts
often run faster (there is no process creation overhead) and have full access to the transaction
context of ModSecurity.

The @inspectFile operator was initially designed for file inspection (hence the name), but it
can also be used in any situation that requires decision making using external logic.

Example of using an external program:

Execute external program to validate uploaded files
SecRule FILES_TMPNAMES "@inspectFile /path/to/inspect_file.pl"

Example of using Lua script (placed in the same directory as the configuration file):

SecRule FILES_TMPNANMES "@inspectFile inspect.lua"

The contents of inspect.lua:

function main(filename)
 -- Do something to the file to verify it. In this example, we
 -- read up to 10 characters from the beginning of the file.
 local f = io.open(filename, "rb");
 local d = f:read(10);
 f:close();

 -- Return null if there is no reason to believe there is anything
 -- wrong with the file (no match). Returning any text will be taken
 -- to mean a match should be triggered.
 return null;
end

ipMatch
Performs a match against one or more IPv4 or IPv6 IP addresses or network segments. Added
in 2.6.0.

Check remote client against one IPv4 address
SecRule REMOTE_ADDR "@ipMatch 192.168.2.254"

Check remote client against two IPv4 network segments
SecRule REMOTE_ADDR "@ipMatch 192.168.2.0/24,192.168.3.0/24"

Check remote client against the loopback IPv6 address
SecRule REMOTE_ADDR "@ipMatch ::1/128"

Check remote client against one IPv6 network segment

Property of Girish Motwani <kushalbooks@yahoo.co.in>

le 327

SecRule REMOTE_ADDR "@ipMatch 2001:DB8::/48"

le
Performs numerical comparison and returns true if the input value is less than or equal to
the operator parameter. Macro expansion is performed on the parameter string before com-
parison.

Detect 15 or fewer headers in a request
SecRule &REQUEST_HEADERS_NAMES "@le 15"

lt
Performs numerical comparison and returns true if the input value is less than to the operator
parameter. Macro expansion is performed on the parameter string before comparison.

Detect fewer than 15 headers in a request
SecRule &REQUEST_HEADERS_NAMES "@lt 15"

pm
Performs a case-insensitive match of the provided phrases against the desired input value.
The operator uses a set-based matching algorithm (Aho-Corasick), which means that it will
match any number of keywords in parallel. When matching of a large number of keywords is
needed, this operator performs much better than a regular expression.

Detect suspicious client by looking at the user agent identification
SecRule REQUEST_HEADERS:User-Agent "@pm WebZIP WebCopier Webster WebStripper …
SiteSnagger ProWebWalker CheeseBot"

Starting with 2.6.0, the @pm operator supports Snort-style binary data embedded in patterns,
in which you can switch from text to binary using the pipe character. In the following example,
we look for AAA in request parameters:

SecRule ARGS "@pm A|41|A" phase:2,log,deny

The pipe character is used to switch from text to binary mode and back. When in binary mode,
bytes are represented by their hexadecimal values.

pmf
Starting with ModSecurity 2.6.0, pmf is an alias for pmFromFile.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

328 Chapter 19: Operators

pmFromFile
Performs a case-insensitive match of the provided phrases against the desired input value.
The operator uses a set-based matching algorithm (Aho-Corasick), which means that it will
match any number of keywords in parallel. When matching of a large number of keywords is
needed, this operator performs much better than a regular expression.

This operator is the same as @pm, except that it takes a list of files as arguments. It will match
any one of the phrases listed in the file(s) anywhere in the target value.

Detect suspicious user agents using the keywords in
the files /path/to/blacklist1 and blacklist2 (the latter
must be placed in the same folder as the configuration file)
SecRule REQUEST_HEADERS:User-Agent "@pm /path/to/blacklist1 blacklist2"

Notes:

1. Files must contain exactly one phrase per line. End of line markers (both LF and CRLF)
will be stripped from each phrase and any whitespace trimmed from both the begin-
ning and the end. Empty lines and comment lines (those beginning with the # charac-
ter) will be ignored.

2. To allow easier inclusion of phrase files with rule sets, relative paths may be used to
the phrase files. In this case, the path of the file containing the rule is prepended to the
phrase file path.

3. The @pm operator phrases do not support metacharacters.

4. Because this operator does not check for boundaries when matching, false positives
are possible in some cases. For example, if you want to use @pm for IP address match-
ing, the phrase 1.2.3.4 will potentially match more than one IP address (e.g., it will
also match 1.2.3.40 or 1.2.3.41). To avoid the false positives, you can use your own
boundaries in phrases. For example, use /1.2.3.4/ instead of just 1.2.3.4. Then, in
your rules, also add the boundaries where appropriate. You will find a complete exam-
ple in the example.

Prepare custom REMOTE_ADDR variable
SecAction "phase:1,nolog,pass,setvar:tx.REMOTE_ADDR=/%{REMOTE_ADDR}/"

Check if REMOTE_ADDR is blacklisted
SecRule TX:REMOTE_ADDR "@pmFromFile blacklist.txt" \
 "phase:1,deny,msg:'Blacklisted IP address'"

The file blacklist.txt may contain:

ip-blacklist.txt contents:
NOTE: All IPs must be prefixed/suffixed with "/" as the rules
will add in this character as a boundary to ensure

Property of Girish Motwani <kushalbooks@yahoo.co.in>

rbl 329

the entire IP is matched.
SecAction "phase:1,pass,nolog,setvar:tx.remote_addr='/%{REMOTE_ADDR}/'"
/1.2.3.4/
/5.6.7.8/

Warning
Before ModSecurity 2.5.12, the @pmFromFile operator understood only the LF line
endings and did not trim the whitespace from phrases. If you are using an older
version of ModSecurity, you should take care when editing the phrase files to avoid
using the undesired characters in patterns.

rbl
Looks up the input value in the RBL (real-time block list) given as parameter. The parameter
can be an IPv4 address or a hostname.

SecRule REMOTE_ADDR "@rbl sc.surbl.org"

In 2.6.0, @rbl was enhanced to provide better messages when working with uribl.com and
spamhaus.org lists.

rsub
Used against STREAM_INPUT_BODY and SEC_OUTPUT_BODY, the @rsub operator performs regular
expression–based data substitution.

SecRule STREAM_INPUT_BODY "@rsub s/regex/replacement/[id]" nolog,phase:2,pass

Notes:

• STREAM_INPUT_BODY must be enabled with SecStreamInBodyInspection.

• STREAM_OUTPUT_BODY must be enabled with SecStreamOutBodyInspection.

• SecContentInjection must be enabled if you want to use @rsub.

• The i flag will make the pattern case insensitive.

• The d flag is used when your pattern contains a macro, which might contain regex
characters that you don’t want to become part of the pattern.

rx
Performs a regular expression match of the pattern provided as parameter. This is the default
operator; the rules that do not explicitly specify an operator default to @rx.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

330 Chapter 19: Operators

Detect Nikto
SecRule REQUEST_HEADERS:User-Agent "@rx nikto" phase:1,t:lowercase

Detect Nikto with a case-insensitive pattern
SecRule REQUEST_HEADERS:User-Agent "@rx (?i)nikto" phase:1,t:none

Detect Nikto with a case-insensitive pattern
SecRule REQUEST_HEADERS:User-Agent "(?i)nikto"

Regular expressions are handled by the PCRE library [http://www.pcre.org]. ModSecurity
compiles its regular expressions with the following settings:

1. The entire input is treated as a single line, even when there are newline characters
present.

2. All matches are case-sensitive. If you wish to perform case-insensitive matching, you
can either use the lowercase transformation function or force case-insensitive match-
ing by prefixing the regular expression pattern with the (?i) modifier (a PCRE feature;
you will find many similar features in the PCRE documentation).

3. The PCRE_DOTALL and PCRE_DOLLAR_ENDONLY flags are set during compilation, meaning
that a single dot will match any character, including the newlines, and a $ end anchor
will not match a trailing newline character.

Regular expressions are a very powerful tool. You are strongly advised to read the PCRE doc-
umentation to get acquainted with its features.

streq
Performs a string comparison and returns true if the parameter string is identical to the input
string. Macro expansion is performed on the parameter string before comparison.

Detect request parameters "foo" that do not
contain "bar", exactly.
SecRule ARGS:foo "!@streq bar"

validateByteRange
Validates that the byte values used in input fall into the range specified by the operator para-
meter. This operator matches on an input value that contains bytes that are not in the specified
range.

Enforce very strict byte range for request parameters (only
works for the applications that do not use the languages other
than English).
SecRule ARGS "@validateByteRange 10, 13, 32-126"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

http://www.pcre.org
http://www.pcre.org

validateDTD 331

The validateByteRange is most useful when used to detect the presence of NUL bytes, which
don’t have a legitimate use, but which are often used as an evasion technique.

Do not allow NUL bytes
SecRule ARGS "@validateByteRange 1-255"

validateDTD
Validates the XML DOM tree against the supplied DTD. The DOM tree must have been built
previously using the XML request body processor. This operator matches when the validation
fails.

Parse the request bodies that contain XML
SecRule REQUEST_HEADERS:Content-Type ^text/xml$ \
 "phase:1,nolog,pass,t:lowercase,\
 ctl:requestBodyProcessor=XML"

Validate XML payload against DTD
SecRule XML "@validateDTD /path/to/xml.dtd" \
 "phase:2,deny,msg:'Failed DTD validation'"

validateSchema
Validates the XML DOM tree against the supplied XML Schema. The DOM tree must have
been built previously using the XML request body processor. This operator matches when the
validation fails.

Parse the request bodies that contain XML
SecRule REQUEST_HEADERS:Content-Type ^text/xml$ \
 "phase:1,nolog,pass,t:lowercase,\
 ctl:requestBodyProcessor=XML"

Validate XML payload against DTD
SecRule XML "@validateSchema /path/to/xml.xsd" \
 "phase:2,deny,msg:'Failed DTD validation'"

validateUrlEncoding
Validates the URL-encoded characters in the provided input string.

Validate URL-encoded characters in the request URI
SecRule REQUEST_URI_RAW "@validateUrlEncoding"

ModSecurity will automatically decode the URL-encoded characters in request parameters,
which means that there is little sense in applying the @validateUrlEncoding operator to them

Property of Girish Motwani <kushalbooks@yahoo.co.in>

332 Chapter 19: Operators

—that is, unless you know that some of the request parameters were URL-encoded more than
once. Use this operator against raw input, or against the input that you know is URL-encoded.
For example, some applications will URL-encode cookies, although that’s not in the standard.
Because it is not in the standard, ModSecurity will neither validate nor decode such encodings.

validateUtf8Encoding
Check whether the input is a valid UTF-8 string.

Make sure all request parameters contain only valid UTF-8
SecRule ARGS "@validateUtf8Encoding"

The @validateUtf8Encoding operator detects the following problems:

Not enough bytes
UTF-8 supports two-, three-, four-, five-, and six-byte encodings. ModSecurity will
locate cases when one or more bytes is/are missing from a character.

Invalid characters
The two most significant bits in most characters should be fixed to 0x80. Some attack
techniques use different values as an evasion technique.

Overlong characters
ASCII characters are mapped directly into UTF-8, which means that an ASCII character
is one UTF-8 character at the same time. However, in UTF-8 many ASCII characters
can also be encoded with two, three, four, five, and six bytes. This is no longer legal in
the newer versions of Unicode, but many older implementations still support it. The
use of overlong UTF-8 characters is common for evasion.

Notes:

• Most, but not all applications use UTF-8. If you are dealing with an application that
does, validating that all request parameters are valid UTF-8 strings is a great way to
prevent a number of evasion techniques that use the assorted UTF-8 weaknesses. False
positives are likely if you use this operator in an application that does not use UTF-8.

• Many web servers will also allow UTF-8 in request URIs. If yours does, you can verify
the request URI using @validateUtf8Encoding.

verifyCC
Detects credit card numbers in input. This operator will first use the supplied regular expres-
sion to perform an initial match, following up with the Luhn algorithm calculation to mini-
mize false positives.

Detect credit card numbers in parameters and

Property of Girish Motwani <kushalbooks@yahoo.co.in>

verifyCPF 333

prevent them from being logged to audit log
SecRule ARGS "@verifyCC \d{13,16}" \
 "phase:2,nolog,pass,msg:'Potential credit card number',\
 sanitiseMatched"

verifyCPF
Detects Brazilian social security numbers. This operator will use the supplied regular expres-
sion to perform an initial match and follow up with a further match against the CPF calcu-
lation algorithm.

Detect Brazilian social security numbers and
prevent them from being logged to audit log
SecRule ARGS "@verifyCPF /^([0-9]{3}\.){2}[0-9]{3}-[0-9]{2}$/" \
 "phase:2,nolog,pass,msg:'Potential CPF number',\
 sanitiseMatched"

verifySSN
Detects US social security numbers. This operator will use the supplied regular expression
to perform an initial match and follow up with a further match against the SSN calculation
algorithm.

Detect US social security numbers in parameters and
prevent them from being logged to audit log
SecRule ARGS "@verifySSN \d{3}-?\d{2}-?\d{4}" \
 "phase:2,nolog,pass,msg:'Potential social security number',\
 sanitiseMatched"

within
Returns true if the input value is found anywhere within the parameter value (the opposite of
@contains). Macro expansion is performed on the parameter string before comparison.

Detect request methods other than GET, POST and HEAD
SecRule REQUEST_METHOD "!@within GET,POST,HEAD"

Property of Girish Motwani <kushalbooks@yahoo.co.in>

334

Property of Girish Motwani <kushalbooks@yahoo.co.in>

335

20 Data Formats
The purpose of this document is to describe the formats of the ModSecurity alert messages,
transaction logs, and communication protocols, which would allow for not only a better un-
derstanding of what ModSecurity does, but also an easy integration with third-party tools
and products.

Alerts
ModSecurity alerts are either warnings (non-fatal problems) or errors (fatal problems, usually
leading to the interception of the transaction in question). Here is an example of a single
ModSecurity alert entry:

Access denied with code 505 (phase 1). Match of "rx …
^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required. …
[id "960034"] [msg "HTTP protocol version is not allowed by policy"] …
[severity "CRITICAL"] [uri "/"] [unique_id "PQaTTVBEUOkAAFwKXrYAAAAM"]

Each alert entry begins with the engine message, which describes what ModSecurity did and
why. For example:

Access denied with code 505 (phase 1). Match of "rx …
^HTTP/(0\\\\.9|1\\\\.[01])$" against "REQUEST_PROTOCOL" required.

Alert Action Description
The first part of the engine message tells you whether ModSecurity acted to interrupt trans-
action or rule processing:

1. If the alert is only a warning, the first sentence will simply say Warning.

2. If the transaction was intercepted, the first sentence will begin with Access denied.
What follows is the list of possible messages related to transaction interception:

• Access denied with code %0: a response with status code %0 was sent.

• Access denied with connection close: connection was abruptly closed.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

336 Chapter 20: Data Formats

• Access denied with redirection to %0 using status %1: a redirection to URI %0 was is-
sued using status %1.

3. There is also a special message that ModSecurity emits when an allow action is execut-
ed. There are three variations of this type of message:

• Access allowed: rule engine stopped processing rules (transaction was unaffected).

• Access to phase allowed: rule engine stopped processing rules in the current phase
only. Subsequent phases will be processed normally. Transaction was not affected by
this rule but it may be affected by any of the rules in the subsequent phase.

• Access to request allowed: rule engine stopped processing rules in the current phase.
Phases prior to request execution in the backend (currently phases 1 and 2) will not
be processed. The response phases (currently phases 3 and 4) and others (currently
phase 5) will be processed as normal. Transaction was not affected by this rule but it
may be affected by any of the rules in the subsequent phase.

Alert Justification Description
The second part of the engine message explains why the alert was generated. Because it is au-
tomatically generated from the rules, it will be very technical in nature, talking about opera-
tors and their parameters, and giving you insight into what the rule looked like. But this mes-
sage cannot give you insight into the reasoning behind the rule. A well-written rule will always
specify a human-readable message (using the msg action) to provide further information.

The format of the second part of the engine message depends on whether it was generated
by the operator (which happens on a match) or by the rule processor (which happens where
there is not a match, but the negation was used):

• @beginsWith: String match %0 at %1.

• @contains: String match %0 at %1.

• @containsWord: String match %0 at %1.

• @endsWith: String match %0 at %1.

• @eq: Operator EQ matched %0 at %1.

• @ge: Operator GE matched %0 at %1.

• @geoLookup: Geo lookup for %0 succeeded at %1.

• @inspectFile: File %0 rejected by the approver script %1: %2

• @le: Operator LE matched %0 at %1.

• @lt: Operator LT matched %0 at %1.

• @pm: Matched phrase %0 at %0.

• @rbl: RBL lookup of %0 succeeded at %1.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Metadata 337

• @rx: Pattern match %0 at %1.

• @streq: String match %0 at %1.

• @validateByteRange: Found %0 byte(s) in %1 outside range: %2.

• @validateDTD: XML: DTD validation failed.

• @validateSchema: XML: Schema validation failed.

• @validateUrlEncoding

• Invalid URL Encoding: Non-hexadecimal digits used at %0.

• Invalid URL Encoding: Not enough characters at the end of input at %0.

• @validateUtf8Encoding

• Invalid UTF-8 encoding: not enough bytes in character at %0.

• Invalid UTF-8 encoding: invalid byte value in character at %0.

• Invalid UTF-8 encoding: overlong character detected at %0.

• Invalid UTF-8 encoding: use of restricted character at %0.

• Invalid UTF-8 encoding: decoding error at %0.

• @verifyCC: CC# match %0 at %1.

Messages not related to operators:

• When SecAction directive is processed: Unconditional match in SecAction.

• When SecRule does not match but negation is used: Match of %0 against %1 required.

Note
The parameters to the operators @rx and @pm (regular expression and text pattern
matching, respectively) will be truncated to 252 bytes if they are longer than this limit.
In this case, the parameter in the alert message will be terminated with three dots.

Metadata
The metadata fields are always placed at the end of the alert entry. Each metadata field is a
text fragment that consists of an open bracket followed by the metadata field name, followed
by the value and the closing bracket. What follows is the text fragment that makes up the id
metadata field.

[id "960034"]

The following metadata fields are currently used:

1. offset: The byte offset where a match occurred within the target data. This is not al-
ways available.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

338 Chapter 20: Data Formats

2. id: Unique rule ID, as specified by the id action.

3. rev: Rule revision, as specified by the rev action.

4. msg: Human-readable message, as specified by the msg action.

5. severity: Event severity as text, as specified by the severity action. The possible val-
ues (with their corresponding numerical values in brackets) are EMERGENCY (0), ALERT
(1), CRITICAL (2), ERROR (3), WARNING (4), NOTICE (5), INFO (6), and DEBUG (7).

6. unique_id: Unique event ID, generated automatically.

7. uri: Request URI.

8. data: Contains transaction data fragment, as specified by the logdata action.

Escaping
ModSecurity alerts will always contain text fragments that were taken from the configuration
or the transaction. Such text fragments are escaped before they are used in messages, in order
to sanitize potentially dangerous characters. They are also sometimes surrounded using dou-
ble quotes. The escaping algorithm is as follows:

1. Characters 0x08 (BACKSPACE), 0x0a (NEWLINE), 0x10 (CARRIAGE RETURN), 0x09 (HORIZON-
TAL TAB), and 0x0b (VERTICAL TAB) will be represented as \b, \n, \r, \t, and \v, respec-
tively.

2. Bytes from the ranges 0-0x1f and 0x7f-0xff (inclusive) will be represented as \xHH,
where HH is the hexadecimal value of the byte.

3. Backslash characters (\) will be represented as \\.

4. Each double-quote character will be represented as \", but only if the entire fragment
is surrounded with double quotes.

Alerts in the Apache Error Log
Every ModSecurity alert conforms to the following format when it appears in the Apache
error log:

[Sun Jun 24 10:19:58 2007] [error] [client 192.168.0.1] …
ModSecurity: ALERT_MESSAGE

This example shows a standard Apache error log format. The ModSecurity: prefix is specific
to ModSecurity. It is used to allow quick identification of ModSecurity alert messages when
they appear in the same file next to other Apache messages.

The actual message (ALERT_MESSAGE in the example) is in the same format as described in the
Alerts section.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Alerts in Audit Logs 339

Note
Apache further escapes ModSecurity alert messages before writing them to the er-
ror log. This means that all backslash characters will be doubled in the error log.
In practice, because ModSecurity will already represent a single backslash within an
untrusted text fragment as two backslashes, the end result in the Apache error log
will be four backslashes. Thus, if you need to interpret a ModSecurity message from
the error log, you should decode the message part after the ModSecurity: prefix first.
This step will peel back the first encoding layer.

Alerts in Audit Logs
Alerts are transported in the H section of the ModSecurity Audit Log. Alerts will appear each
on a separate line and in the order they were generated by ModSecurity. Each line will be in
the following format:

Message: ALERT_MESSAGE

Here is an example of an H section that contains two alert messages:

--c7036611-H--
Message: Warning. Match of "rx ^apache.*perl" against …
"REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request …
Indicates an automated program explored the site"] [severity "NOTICE"]
Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b…
(?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)…
|.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_…
(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|…
makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack. …
Matched signature: union select"] [severity "CRITICAL"]
Stopwatch: 1199881676978327 2514 (396 2224 -)
Producer: ModSecurity v2.x.x (Apache 2.x)
Server: Apache/2.x.x

--c7036611-Z--

Audit Log
ModSecurity records one transaction in what is essentially a single file. Below is an example:

--c7036611-A--
[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995
 80.68.80.233 80
--c7036611-B--
GET //EvilBoard_0.1a/index.php?c='/**/union/**/select/**/1,concat(username,…
char(77),password,char(77),email_address,char(77),info,char(77),user_level,…
char(77))/**/from/**/eb_members/**/where/**/userid=1/*http://kamloopstutor.…

Property of Girish Motwani <kushalbooks@yahoo.co.in>

340 Chapter 20: Data Formats

com/images/banners/on.txt? HTTP/1.1
TE: deflate,gzip;q=0.3
Connection: TE, cslose
Host: www.example.com
User-Agent: libwww-perl/5.808

--c7036611-F--
HTTP/1.1 404 Not Found
Content-Length: 223
Connection: close
Content-Type: text/html; charset=iso-8859-1

--c7036611-H--
Message: Warning. Match of "rx ^apache.*perl" against …
"REQUEST_HEADERS:User-Agent" required. [id "990011"] [msg "Request …
Indicates an automated program explored the site"] [severity "NOTICE"]
Message: Warning. Pattern match "(?:\\b(?:(?:s(?:elect\\b(?:.{1,100}?\\b…
(?:(?:length|count|top)\\b.{1,100}?\\bfrom|from\\b.{1,100}?\\bwhere)…
|.*?\\b(?:d(?:ump\\b.*\\bfrom|ata_type)|(?:to_(?:numbe|cha)|inst)r))|p_…
(?:(?:addextendedpro|sqlexe)c|(?:oacreat|prepar)e|execute(?:sql)?|…
makewebt ..." at ARGS:c. [id "950001"] [msg "SQL Injection Attack. …
Matched signature: union select"] [severity "CRITICAL"]
Stopwatch: 1199881676978327 2514 (396 2224 -)
Producer: ModSecurity v2.x.x (Apache 2.x)
Server: Apache/2.x.x

--c7036611-Z--

The file consist of multiple sections, each in different format. Separators are used to define
sections:

--c7036611-A--

A separator always begins on a new line and conforms to the following format:

1. Two dashes

2. Unique boundary, which consists of several hexadecimal characters

3. One dash character

4. Section identifier, currently a single uppercase letter

5. Two trailing dashes

Refer to the documentation for SecAuditLogParts for the explanation of each part.

Parts
This section documents the audit log parts available in ModSecurity 2.x. They are:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Parts 341

• A: audit log header

• B: request headers

• C: request body

• D: attempted response headers (not implemented)

• E: attempted response body

• F: response headers

• G: response body (not implemented)

• H: audit log trailer

• I: reduced multipart request body

• J: multipart files information

• K: matched rules information

• Z: audit log footer

Audit Log Header (A)
ModSecurity 2.x audit log entries always begin with the header part. For example:

--c7036611-A--
[09/Jan/2008:12:27:56 +0000] OSD4l1BEUOkAAHZ8Y3QAAAAH 209.90.77.54 64995 …
80.68.80.233 80

The header contains only one line, with the following information on it:

1. Timestamp

2. Unique transaction ID

3. Source IP address (IPv4 or IPv6)

4. Source port

5. Destination IP address (IPv4 or IPv6)

6. Destination port

Request Headers (B)
The request headers part contains the request line and the request headers, but the data record-
ed need not be identical to the content sent by the client because Apache does not expose
raw request line and request headers to its modules. For that reason, ModSecurity sees only
processed data provided to it by Apache. Although the end result may be identical to the raw
request, differences are possible in some areas:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

342 Chapter 20: Data Formats

1. If any of the fields are NUL-terminated, Apache will see only the content prior to the
NUL.

2. Headers that span multiple lines (a feature known as header folding) will be collapsed
into a single line.

3. Multiple headers with the same name will be combined into a single header (as al-
lowed by the HTTP RFC).

Request Body (C)
This part contains the request body of the transaction, after dechunking and decompression
(if applicable).

Attempted Response Headers (D)
This part contains the status line and the request headers that would have been delivered to
the client had ModSecurity not intervened. Thus this part makes sense only for transactions
in which ModSecurity altered the data flow. By differentiating between the attempted and the
final response headers, we are able to record what was internally ready for sending, but also
what was actually sent.

Note
This part is reserved for future use. It is currently not implemented.

Attempted Response Body (E)
This part contains the transaction response body (before compression and chunking, where
used) that was either sent or would have been sent had ModSecurity not intervened. You can
find whether interception took place by looking at the Action header of the part H. If that
header is present, and the interception took place in phase 3 or 4, then the E part contains the
intended response body. Otherwise, it contains the actual response body.

Note
Once the G (actual response body) part is implemented, part E will be present only in
audit logs that contain a transaction that was intercepted, and there will be no need
for further analysis.

Response Headers (F)
This part contains the actual response headers sent to the client. Because ModSecurity does
not have access to the raw connection data, it constructs part F out of the internal Apache data
structures that hold the response headers.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Parts 343

Some headers (the Date and Server response headers) are generated just before they are sent,
and ModSecurity is not able to record those. You should note than ModSecurity is working
as part of a reverse proxy, the backend web server will have generated these two headers, and
in that case they will be recorded.

Response Body (G)
When implemented, this part will contain the actual response body before compression and
chunking.

Note
This part is reserved for future use. It is not implemented in ModSecurity 2.x.

Audit Log Trailer (H)
Part H contains additional transaction metadata that was obtained from the web server or
from ModSecurity itself. The part contains a number of trailer headers, which are similar to
HTTP headers (without support for header folding):

1. Action

2. Apache-Error

3. Message

4. Producer

5. Response-Body-Transformed

6. Sanitised-Args

7. Sanitised-Request-Headers

8. Sanitised-Response-Headers

9. Server

10. Stopwatch

11. Stopwatch2

12. WebApp-Info

Action

The Action header is present only for the transactions that were intercepted:

Action: Intercepted (phase 2)

The phase information documents the phase in which the decision to intercept took place.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

344 Chapter 20: Data Formats

Apache-Error

The Apache-Error header contains Apache error log messages observed by ModSecurity, ex-
cluding those sent by ModSecurity itself. For example:

Apache-Error: [file "/tmp/build/apache2-2.0.54/build-tree/apache2/server/…
core.c"] [line 3505] [level 3] File does not exist: /var/www/www.…
modsecurity.org/fst/documentation/modsecurity-apache/2.5.0-dev2

Message

Zero or more Message headers can be present in any trailer, and each such header will represent
a single ModSecurity warning or error, displayed in the order they were raised.

The following example was broken into multiple lines to make it fit this page:

Message: Access denied with code 400 (phase 2). Pattern match "^\w+:/" at …
REQUEST_URI_RAW. [file "/etc/apache2/rules-1.6.1/modsecurity_crs_20_…
protocol_violations.conf"] [line "74"] [id "960014"] [msg "Proxy access …
attempt"] [severity "CRITICAL"] [tag "PROTOCOL_VIOLATION/PROXY_ACCESS"]

Producer

The Producer header identifies the product that generated the audit log. For example:

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/).

ModSecurity allows rule sets to add their own signatures to the Producer information (this
is done using the SecComponentSignature directive). Following is an example of the Producer
header with the signature of one component (all one line):

Producer: ModSecurity for Apache/2.5.5 (http://www.modsecurity.org/); …
MyComponent/1.0.0 (Beta).

Response-Body-Transformed

This header will appear in every audit log that contains a response body:

Response-Body-Transformed: Dechunked

The contents of the header is constant at present, so the header is useful only as a reminder that
the recorded response body is not identical to the one sent to the client. The actual content is
the same, except that Apache may further compress the body and deliver it in chunks.

Sanitised-Args

The Sanitised-Args header contains a list of arguments that were sanitised (each byte of their
content replaced with an asterisk) before logging. For example:

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Parts 345

Sanitised-Args: "old_password", "new_password", "new_password_repeat".

Sanitised-Request-Headers

The Sanitised-Request-Headers header contains a list of request headers that were sanitized
before logging. For example:

Sanitised-Request-Headers: "Authentication".

Sanitised-Response-Headers

The Sanitised-Response-Headers header contains a list of response headers that were sani-
tized before logging. For example:

Sanitised-Response-Headers: "My-Custom-Header".

Server

The Server header identifies the web server. For example:

Server: Apache/2.0.54 (Debian GNU/Linux) mod_ssl/2.0.54 OpenSSL/0.9.7e

This information may sometimes be present in any of the parts that contain response headers,
but there are a few cases when it isn’t:

1. None of the response headers were recorded.

2. The information in the response headers is not accurate because server signature
masking was used.

Stopwatch

The Stopwatch header provides certain diagnostic information that allows you to determine
the performance of the web server and of ModSecurity itself. It will typically look like this:

Stopwatch: 1222945098201902 2118976 (770* 4400 -)

Each line can contain up to five different values. Some values can be absent; each absent value
will be replaced with a dash.

The meanings of the values are as follows (all values are in microseconds):

1. Transaction timestamp in microseconds since January 1, 1970.

2. Transaction duration.

3. The time between the moment Apache started processing the request and until phase
2 of ModSecurity began. If an asterisk is present, that means the time includes the time
it took ModSecurity to read the request body from the client (typically slow). This val-

Property of Girish Motwani <kushalbooks@yahoo.co.in>

346 Chapter 20: Data Formats

ue can be used to provide a rough estimate of the client speed, but only with larger re-
quest bodies (the smaller request bodies may arrive in a single TCP/IP packet).

4. The time between the start of processing and until phase 2 was completed. If you sub-
tract the previous value from this value, you will get the exact duration of phase 2
(which is the main rule processing phase).

5. The time between the start of request processing and the point at which we began
sending a fully-buffered response body to the client. If you subtract this value from the
total transaction duration and divide with the response body size, you may get a rough
estimate of the client speed, but only for larger response bodies.

Note
As of ModSecurity 2.6, the Stopwatch2 header replaces Stopwatch to provide more
information about internal processes. The old header is still provided, but it’s there
only for backward compatibility.

Stopwatch2

Starting with ModSecurity 2.6, the Stopwatch2 header provides improved performance sta-
tistics. For example:

Stopwatch2: 1264256494438648 5131; combined=3917, p1=11, p2=3653, p3=3, p4=29, …
p5=221, sr=0, sw=0, l=0, gc=0

The first two values are the same as in the Stopwatch header: the first is the transaction time-
stamp in microseconds since January 1, 1970; the second is the transaction duration, also in
microseconds.

The performance metrics follow after the semicolon:

• combined: combined processing time

• p1–p5: time spent in each of the rule phases

• sr and sw: time spent reading from and writing to persistent storage, respectively

• l: time spent on audit logging

• gc: time spent on garbage collection

All the values are given in microseconds.

WebApp-Info

The WebApp-Info header contains information on the application to which the recorded trans-
action belongs. This information will appear only if it is known, which will happen if SecWe-
bAppId was set, or setsid or setuid executed in the transaction.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Parts 347

The header uses the following format:

WebApp-Info: "WEBAPPID" "SESSIONID" "USERID"

Each unknown value is replaced with a dash.

Reduced Multipart Request Body (I)
Transactions that deal with file uploads tend to be large, yet the file contents is not always
relevant from the security point of view. The I part was designed to avoid recording raw mul-
tipart/form-data request bodies, replacing them with a simulated application/x-www-form-
urlencoded body that contains the same key-value parameters.

The reduced multipart request body will not contain any file information. The J part is de-
signed to carry the file information.

Multipart Files Information (J)
The purpose of part J is to record the information on the files contained in a multipart/form-
data request body. This is handy in the cases when the original request body was not recorded,
or when only a reduced version was recorded (e.g., when part I was used instead of part C).

This part uses the CSV (comma-separated values) format, with each line containing informa-
tion on one file. The fields are as follows: field number, file size, file name, and file content
type. The last line contains the overall size of uploaded files.

The following example represents a multipart/form-data request with two files, one that was
present and the other that wasn’t (that’s why the size is zero):

2,34566,"image.png","image/png"
3,0,"","<Unknown ContentType>"
Total,34566

Available as of 2.6.0.

Matched Rules (K)
The matched rules part contains a record of all ModSecurity rules that matched during trans-
action processing. In 2.5.x, when a rule which is a part of a chain matches, it will not cause the
rest of the chain to be included, meaning that only partial chains may be logged. Starting with
2.6.0, only completed chains are logged, and indication is provided regarding which parts ran
and which didn’t.

This part is available starting with ModSecurity 2.5.0, with further enhancements made in
2.6.0.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

348 Chapter 20: Data Formats

Audit Log Footer (Z)
Part Z is a special part that only has a boundary but no content. Its only purpose is to signal
the end of an audit log.

Storage Formats
ModSecurity supports two audit log storage formats:

1. Serial audit log format: multiple audit log files stored in the same file.

2. Concurrent audit log format: one file is used for every audit log.

Serial Audit Log Format
The serial audit log format stores multiple audit log entries within the same file (one after
another). This is often very convenient (audit log entries are easy to find), but this format is
suitable for only light logging because writing to the file is serialized: only one audit log entry
can be written at any one time. On a server that logs too much, a transaction may need to wait
for some other transaction to finish writing to the serial audit log file.

Concurrent Audit Log Format
The concurrent audit log format uses one file per audit log entry, and allows many transactions
to be recorded in parallel. A hierarchical directory structure is used to ensure that the number
of files created in any one directory remains relatively small. For example:

$LOGGING-HOME/20081128/20081128-1414/20081128-141417-…
egDKy38AAAEAAAyMHXsAAAAA

The current time is used to work out the directory structure. The file name is constructed
using the current time and the transaction ID.

The creation of every audit log in concurrent format is recorded with an entry in the concur-
rent audit log index file. The format of each line resembles the common web server access log
format. For example:

192.168.0.111 192.168.0.1 - - [28/Nov/2008:15:06:32 +0000] …
"GET /?p=\\ HTTP/1.1" 200 69 "-" "-" NOfRx38AAAEAAAzcCU4AAAAA …
"-" /20081128/20081128-1506/20081128-150632-NOfRx38AAAEAAAzcCU4AAAAA …
0 1183 md5:ffee2d414cd43c2f8ae151652910ed96

The tokens on the line are as follows:

1. Hostname (or IP address, if the hostname is not known)

2. Source IP address

Property of Girish Motwani <kushalbooks@yahoo.co.in>

Remote Logging Protocol 349

3. Remote user (from HTTP Authentication)

4. Local user (from identd)

5. Timestamp

6. Request line

7. Response status

8. Bytes sent (in the response body)

9. Referrer information

10. User-Agent information

11. Transaction ID

12. Session ID

13. Audit log file name (relative to the audit logging home, as configured using the Se-
cAuditLogStorageDir directive)

14. Audit log offset

15. Audit log size

16. Audit log hash (the has begins with the name of the algorithm used, followed by a
colon, followed by the hexadecimal representation of the hash itself); this hash can
be used to verify that the transaction was correctly recorded and that it hasn’t been
modified since.

Note
Lines in the index file will be up to 3980 bytes long, and the information logged will
be reduced to fit where necessary. Reduction will occur within the individual fields,
but the overall format will remain the same. The character L will appear as the last
character on a reduced line. A space will be the last character on a line that was not
reduced to stay within the limit.

Remote Logging Protocol
Audit logs generated in multi-sensor deployments are of little use if left on the sensors. More
commonly, they will be transported to a central logging server using the transport protocol
described in this section:

1. The transport protocol is based on the HTTP protocol.

2. The server end is an SSL-enabled web server with HTTP Basic Authentication
configured.

3. Clients will open a connection to the centralization web server and authenticate (given
the end-point URI, the username and the password).

Property of Girish Motwani <kushalbooks@yahoo.co.in>

350 Chapter 20: Data Formats

4. Clients will use a single PUT transaction to submit an entry, placing the file in the body
of the request and additional information in the request headers (see the following en-
try for details).

5. Server will process each submission and respond with an appropriate status code:

a. 200 (OK): the submission was processed; the client can delete the corresponding
audit log entry if it so desires. The same audit log entry must not be submitted
again.

b. 409 (Conflict): the submission is in invalid format and cannot be processed. The
client should attempt to fix the problem with the submission and attempt delivery
again at a later time. This error is generally going to occur due to a programming
error in the protocol implementation, and not because of the content of the audit
log entry that is being transported.

c. 500 (Internal Server Error): the server was unable to correctly process the submis-
sion, due to its own fault. The client should reattempt delivery at a later time. A
client that starts receiving 500 responses to all its submission should suspend its op-
erations for a period of time before continuing.

Note
Server implementations are advised to accept all submissions that correctly imple-
ment the protocol. Clients are unlikely to be able to overcome problems within audit
log entries, so such problems are best resolved on the server side.

Note
When en error occurs, the server may place an explanation of the problem in the text
part of the response line.

Request Headers Information
Each audit log entry submission must contain additional information in the request headers:

1. The X-Content-Hash header must contain the audit log entry hash. Clients should ex-
pect the audit log entries to be validated against the hash by the server.

2. The X-ForensicLog-Summary header must contain the entire concurrent format index
line.

3. The Content-Lenght header must be present and contain the length of the audit log
entry.

Property of Girish Motwani <kushalbooks@yahoo.co.in>

351

Index
A

Action part H header, 343
actions

overview, 80
reference documentation, 307
tutorial, 88

Aho-Corasick algorithm, 196
alerts

messages, 335
periodic alerting, 131

allow action, 307
(see also whitelisting)

anti-virus (see ClamAV)
Apache-Error part H header, 344
Apache Portable Runtime (APR), 225
append action, 308

(see also content injection)
APR (see Apache Portable Runtime)
ARGS_COMBINED_SIZE variable, 277
ARGS_GET_NAMES variable, 277
ARGS_GET variable, 277
ARGS_NAMES variable, 277
ARGS_POST_NAMES variable, 278
ARGS_POST variable, 278
ARGS collection, 277
AuditConsole, 21
audit log, 52

auditlog action, 308
concurrent format, 55
configuration, 44
controlling from rules, 95
dynamically controlling, 67
format specification, 339
noauditlog action, 315
parts, 340
remote logging, 56

remote logging protocol, 349
removing sensitive data from, 67
selective logging, 68

auditlog action, 308
AUTH_TYPE variable, 278

B
Barnett, Ryan C., 201
base64DecodeExt function, 300
base64Decode function, 300
base64Encode function, 300
beginsWith operator, 323
blacklisting, 157
block action, 308
blocking, 92

advanced, 165
delayed, 169
external, 168
immediate, 165
in detection-only mode, 38
IP address, 158
real-time block lists, 160
score-based, 170
sessions, 140
user-friendly, 167

Boyer-Moore-Horspool algorithm, 231
brute force attack detection, 136

C
capture action, 96, 309
CentOS, 31
chain action, 309
ClamAV, 64
cmdLine function, 300
collections, 77

(see also persistent storage)
built-in variables, 125
variables (see variables)

compression
disable backend, 255

Property of Girish Motwani <kushalbooks@yahoo.co.in>

352 Index

compressWhitespace function, 300
concurrent audit log format, 348
conditional logging, 163
configuration, 33

activating ModSecurity, 37
audit log, 44
container directives, 108
contexts, 109
debug log, 43
default rule match policy, 45
directives and parameters, 106
file layout, 36
filesystem locations, 42
file uploads, 42
folder locations, 34
folder permissions, 35
handling processing errors, 45
inheritance, 111
line breaking, 106
main directives, 33
merging, 110
request body handling, 38
response body handling, 40
spreading across files, 107
syntax, 105
verifying installation, 47

configuration directives, 71, 245
container directives, 108
contains operator, 323
content injection, 199

communicating with users, 203
CRSF defense, 201
using external JavaScript code, 202

cookies
securing session, 164

Core Rule Set
performance, 186

CRSF defense, 201
cssDecode function, 301

ctl action, 310

D
data

capturing, 96
recording in alerts, 99

Debian, 31
debug log, 49

configuration, 43
in production, 50

decodeBase64Ext function, 301
denial of service attack detection, 134
deny action, 311
deployment options, 7, 102

(see also embedded vs. reverse proxy differences)
deprecatevar action, 311
directives, 245
DoS (see denial of service attack)
drop action, 312
DTD validation, 215
DURATION variable, 278

E
embedded deployment, 7
embedded vs. reverse proxy differences, 102
Emerging Threats rules, 179
endsWith operator, 323
ENV collection, 278
environment variables

ENV collection, 278
integration with other apache modules, 161
setenv action, 320

eq operator, 323
escapeSeqDecode function, 301
exec action, 312
expirevar action, 312
Expresso, 175
extending ModSecurity, 226

adding new operator, 231
adding new transformation function, 228

Property of Girish Motwani <kushalbooks@yahoo.co.in>

353

adding new variable, 235
extension template, 226

F
Fedora Core, 31
file inspection, 63

ClamAV, 64
inspectFile operator, 325

FILES_COMBINED_SIZE variable, 279
FILES_NAMES collection, 279
FILES_SIZES collection, 279
FILES_TMPNAMES collection, 279
FILES collection, 278
functions (see transformation functions)

G
GEO collection, 279
geolocation, 159
geoLookup operator, 324
ge operator, 324
gsbLookup operator, 324
gt operator, 325

H
header manipulation, 163
hexDecode function, 301
hexEncode function, 301
HIGHEST_SEVERITY variable, 280
honeypot, diversion to, 169
htmlEntityDecode function, 301

I
id action, 313
if-then-else, 95
impedance mismatch, 155
inactivity timeout mechanism, 123
INBOUND_DATA_ERROR variable, 280
initcol action, 313

creating collections, 120
inspectFile operator, 325

installation, 23
from binaries, 30

CentOS, 31
Debian, 31
Fedora Core, 30
Red Hat Enterprise Linux, 31
Ubuntu, 31
Windows, 31

from development repository, 25
from source, 24

integration with other apache modules, 161
IP address

blocking, 158
reputation, 157
tracking, 120

IP collection, 120
ipMatch operator, 326

J
jsDecode function, 302

L
length function, 302
le operator, 327
libxml2, 27, 211
load testing, 185
local reputation management, 161
Location directive (Apache), 108
log action, 314
logdata action, 314
logging, 49

advanced configuration, 66
audit log, 52
concurrent, 55
conditional, 163
configuration, 43
controlling from rules, 95
debug log, 49
file upload interception, 62
remote, 56

Property of Girish Motwani <kushalbooks@yahoo.co.in>

354 Index

transaction, 10
lowercase function, 302
lt operator, 327
Lua, 205

(see also SecRuleScript directive)
detecting very old records, 124
restricting session lifetime, 142
writing actions in, 208
writing rules in, 205

M
macro expansion (see variable expansion)
Mastering Regular Expressions, 175
MATCHED_VAR_NAME variable, 281
MATCHED_VARS_NAMES variable, 281
MATCHED_VARS variable, 281
MATCHED_VAR variable, 280
matched rules, 347
md5 function, 302
Message part H header, 344
metadata

actions overview, 81
tutorial, 100

mlogc (see remote logging)
activating, 59
configuring, 57
troubleshooting, 60

mod_headers, 141, 163
MODSEC_BUILD variable, 281
ModSecurity Log Collector (see remote logging)
MSC_PCRE_LIMITS_EXCEEDED, 295
msg action, 314
multiMatch action, 314
MULTIPART_CRLF_LF_LINES variable, 281
MULTIPART_STRICT_ERROR variable, 282
MULTIPART_UNMATCHED_BOUNDARY variable, 283

N
noauditlog action, 315
nolog action, 315

none function, 302
normalisePath function, 302
normalisePathWin function, 302

O
Open Web Application Security Project, 6
operators

negation, 87
overview, 77
reference documentation, 323

optional functions (in Apache), 230
OUTBOUND_DATA_ERROR variable, 283
OWASP (see Open Web Application Security Project)

P
parallel matching

IP address blocking, 158
optimizing pattern matching, 193
pm, 327
pmFromFile, 328

parityEven7bit function, 303
parityOdd7bit function, 303
parityZero7bit function, 303
pass action, 315
patching (see virtual patching)
PATH_INFO variable, 283
pause action, 315
PCRE (see regular expressions)
PERF_ALL variable, 283

custom Apache logging, 185
PERF_COMBINED variable, 284
PERF_GC variable, 284
PERF_LOGGING variable, 284
PERF_PHASE1 variable, 284
PERF_PHASE2 variable, 284
PERF_PHASE3 variable, 284
PERF_PHASE4 variable, 284
PERF_PHASE5 variable, 284
PERF_SREAD variable, 285
PERF_SWRITE variable, 285

Property of Girish Motwani <kushalbooks@yahoo.co.in>

355

performance
comparing rule sets, 185
logging, 184
overview, 181
real-time monitoring, 185
rule benchmarking, 189
top 10 rules, 182

periodic alerting, 131
persistent records

controlling longevity, 122
creating, 120
deleting, 123
initializing, 122
limits, 130
retrieving, 128

persistent storage, 119
brute force attack detection, 136
denial of service attack detection, 134
implementation details, 127
namespaces, 121
periodic alerting, 131
session management, 138
user management, 145

phase action, 316
phases (see transaction lifecycle)
PHPIDS, 179
pmf operator, 327
pmFromFile operator, 328
pm operator, 327
prepend action, 316, 316

(see also content injection)
processing errors

flags, 76
handling, 45

Producer part H header, 344
proxy action, 169, 316

(see also honeypot, diversion to)

Q
QUERY_STRING variable, 285

R
rbl operator, 329
real-time block lists, 160
recording data in alerts, 99
records (see persistent records)
Red Hat Enterprise Linux, 31
redirect action, 317
RegexBuddy, 175
Regex Coach, 175
regular expressions, 171

(see also rx operator)
combining for performance, 195
denial of service (ReDoS), 174
limits, 45
making most of, 171
optimizing for performance, 195

Regular Expressions Cookbook, 175
REMOTE_ADDR variable, 285
REMOTE_HOST variable, 285
REMOTE_PORT variable, 285
REMOTE_USER variable, 286
remote logging, 56
remote logging protocol, 349
removeCommentsChar function, 303
removeComments function, 303
removeNulls function, 303
removeWhitespace function, 303
replaceComments function, 304
replaceNulls function, 304
REQBODY_ERROR_MSG variable, 286
REQBODY_ERROR variable, 286
REQBODY_PROCESSOR_ERROR_MSG variable, 287
REQBODY_PROCESSOR_ERROR variable, 286
REQBODY_PROCESSOR variable, 286
REQUEST_BASENAME variable, 287
REQUEST_BODY_LENGTH variable, 287

Property of Girish Motwani <kushalbooks@yahoo.co.in>

356 Index

REQUEST_BODY variable, 287
REQUEST_COOKIES_NAMES collection, 288
REQUEST_COOKIES collection, 287
REQUEST_FILENAME variable, 288
REQUEST_HEADERS_NAMES collection, 288
REQUEST_HEADERS collection, 288
REQUEST_LINE variable, 288
REQUEST_METHOD variable, 289
REQUEST_PROTOCOL variable, 289
REQUEST_URI_RAW variable, 289
REQUEST_URI variable, 289
request body handling, 38
resources

for ModSecurity, 18
for regular expressions, 175
for rule writers, 179

RESPONSE_BODY variable, 289
RESPONSE_CONTENT_LENGTH variable, 290
RESPONSE_CONTENT_TYPE variable, 290
RESPONSE_HEADERS_NAMES collection, 290
RESPONSE_HEADERS collection, 290
RESPONSE_PROTOCOL variable, 290
RESPONSE_STATUS variable, 291
response body handling, 40
Response-Body-Transformed part H header, 344
rev action, 317
reverse proxy deployment, 7
rsub operator, 329
RULE collection, 291
rule language, 72

(see also variables)
extending, 225
operators, 85
overview, 71
tutorial, 85
variables, 72, 86

rules
benchmarking, 189
combining into chains, 87

excluding at runtime, 116
flow, changing, 93
inheritance, 112
manipulation, 114
removing at configure time, 114
syntax, 71
updating actions at configure time, 115
updating targets at configure time, 116

rx operator, 329

S

sanitiseArg action, 317
Sanitised-Argos part H header, 344
sanitiseMatched action, 317
sanitiseMatchedBytes action, 318
sanitiseRequestHeader action, 318
sanitiseResponseHeader action, 318
Sanitized-Request-Headers part H header, 345
Sanitized-Response-Headers part H header, 345
SCRIPT_BASENAME variable, 291
SCRIPT_FILENAME variable, 291
SCRIPT_GID variable, 291
SCRIPT_GROUPNAME variable, 291
SCRIPT_MODE variable, 292
SCRIPT_UID variable, 292
SCRIPT_USERNAME variable, 292
SDBM, 127
SecAction directive, 245
SecArgumentSeparator directive, 245
SecAuditEngine directive, 246
SecAuditLog2 directive, 247
SecAuditLog directive, 246
SecAuditLogDirMode directive, 247
SecAuditLogFileMode directive, 248
SecAuditLogParts directive, 248
SecAuditLogRelevantStatus directive, 250
SecAuditLogStorageDir directive, 250
SecAuditLogType directive, 250
SecCacheTransformations directive, 251

Property of Girish Motwani <kushalbooks@yahoo.co.in>

357

SecChrootDir directive, 252
SecCollectionTimeout directive, 252
SecComponentSignature directive, 253
SecContentInjection directive, 253
SecCookieFormat directive, 253
SecDataDir directive, 254
SecDebugLog directive, 254
SecDebugLogLevel directive, 254
SecDefaultAction directive, 255

inheritance anomaly, 113
SecDisableBackendCompression directive, 255
SecGeoLookupDb directive, 256
SecGsbLookupDb directive, 256
SecGuardianLog directive, 256
SecInterceptOnError directive, 257
SecMarker directive, 257
SecPcreMatchLimit directive, 258
SecPcreMatchLimitRecursion directive, 258
SecPdfProtect directive, 259
SecPdfProtectMethod directive, 259
SecPdfProtectSecret directive, 259
SecPdfProtectTimeout directive, 260
SecPdfProtectTokenName directive, 260
SecReadStateLimit directive, 260, 275
SecRequestBodyAccess directive, 261
SecRequestBodyInMemoryLimit directive, 263
SecRequestBodyLimitAction directive, 262
SecRequestBodyLimit directive, 261
SecRequestBodyNoFilesLimit directive, 262
SecResponseBodyAccess directive, 265
SecResponseBodyLimitAction directive, 263
SecResponseBodyLimit directive, 263
SecResponseBodyMimeType directive, 264
SecResponseBodyMimeTypesClear directive, 264
SecRule directive, 265
SecRuleEngine directive, 266
SecRuleInheritance directive, 265
SecRuleRemoveById directive, 267
SecRuleRemoveByMsg directive, 267

SecRuleRemoveByTag directive, 267
SecRuleScript directive, 205, 267

(see also Lua)
SecRuleUpdateActionById directive, 269
SecRuleUpdateTargetById directive, 270
SecServerSignature directive, 271
SecStreamInBodyInspection directive, 271
SecStreamOutBodyInspection directive, 272
SecTmpDir directive, 272
SecUnicodeCodePage directive, 275
SecUnicodeMapFile directive, 275
SecUploadDir directive, 272
SecUploadFileLimit directive, 273
SecUploadFileMode directive, 273
SecUploadKeepFiles directive, 274
SecWebAppId directive, 274
serial audit log format, 348
SERVER_ADDR variable, 292
SERVER_NAME variable, 292
SERVER_PORT variable, 292
Server part H header, 345
SESSION collection, 293
session cookies

securing, 164
SESSIONID variable, 293
sessions

blocking, 140
detecting hijacking, 144
forcing regeneration, 140
initializing, 138
management, 138
restricting lifetime, 141
securing cookies, 164

setenv action, 320
setsid action, 320
setuid action, 319
setvar action, 320
severity action, 319
sha1 function, 304

Property of Girish Motwani <kushalbooks@yahoo.co.in>

358 Index

skip action, 321
changing rule flow, 93
if-then-else, 95
smarter skipping, 94

skipAfter action, 321
skipping, 93

smarter, 94
Spanner, The, 179
sqlHexDecode function, 305
status action, 321
Stopwatch2 part H header, 346
Stopwatch part H header, 345
storage (see persistent storage)
storage formats, 348

concurrent audit log, 348
serial audit log, 348

STREAM_INPUT_BODY variable, 293
STREAM_OUTPUT_BODY variable, 293
streq operator, 330

T

t action, 322
tag action, 322
TIME_DAY variable, 294
TIME_EPOCH variable, 294
TIME_HOUR variable, 294
TIME_MIN variable, 294
TIME_MON variable, 294
TIME_SEC variable, 294
TIME_WDAY variable, 295
TIME_YEAR variable, 295
TIME variable, 294
transaction lifecycle, 11
transformation functions

overview, 91
reference documentation, 299

trim function, 305
trimLeft function, 305
trimRight function, 305

TX variable, 295

U

Ubuntu, 31
UNIQUE_ID variable, 295
urlDecode function, 304
urlDecodeUni function, 304
URLENCODED_ERROR variable, 296
urlEncode function, 304
USER collection, 145
USERID variable, 296
user tracking, 145

V

validateByteRange operator, 330
validateDTD operator, 331
validateSchema operator, 331
validateUrlEncoding operator, 331
validateUtf8Encoding operator, 332
variables

counting, 87
expansion, 98
expiry, 126
manipulation, 97
overview, 72
reference documentation, 277
value depreciation, 126

verifyCC operator, 332
verifyCPF operator, 333
verifying installation, 47
verifySSN operator, 333
VirtualHost directive (Apache), 108
virtual patching, 152

W

WAF (see web application firewall)
WASC (see Web Application Security Consortium)
WEBAPPID variable, 296

Property of Girish Motwani <kushalbooks@yahoo.co.in>

359

WebApp-Info part H header, 346
web application firewall, 6
Web Application Firewall Evaluation Criteria, 6
Web Application Security Consortium, 6
WEBSERVER_ERROR_LOG variable, 296
whitelisting, 149, 307

(see also allow action)
within operator, 333

X

XML, 211
DTD validation, 215
inspection framework, 222
libxml2, 211
namespaces, 217
parsing, 211
schema validation, 216
XPath expressions, 220
XPath namespaces, 222

xmllint, 211
xmlns action, 322
XML variable, 296
XSS Cheat Sheet, 179

Property of Girish Motwani <kushalbooks@yahoo.co.in>

360

	ModSecurity Handbook
	Table of Contents
	Preface
	Scope and Audience
	Contents
	Updates
	Feedback
	About the Author
	About the Technical Reviewer
	Acknowledgments

	Part I: User Guide
	Chapter 1: Introduction
	Brief History of ModSecurity
	What Can ModSecurity Do?
	Guiding Principles
	Deployment Options
	Is Anything Missing?

	Getting Started
	Hybrid Nature of ModSecurity
	Main Areas of Functionality
	What Rules Look Like
	Transaction Lifecycle
	Lifecycle Example
	File Upload Example

	Impact on Web Server
	What Next?

	Resources
	General Resources
	Developer Resources
	AuditConsole

	Summary

	Chapter 2: Installation
	Installation from Source
	Downloading Releases
	Downloading from Repository
	Installation on Unix
	Compile-Time Options
	Custom-Compiled Apache Installations

	Installation from Binaries
	Fedora Core, CentOS, and Red Hat Enterprise Linux
	Debian and Ubuntu

	Installation on Windows
	Summary

	Chapter 3: Conﬁguration
	Folder Locations
	Conﬁguration Layout
	Adding ModSecurity to Apache
	Powering Up
	Request Body Handling
	Response Body Handling
	Filesystem Locations
	File Uploads
	Debug Log
	Audit Log
	Miscellaneous Options
	Default Rule Match Policy
	Handling Processing Errors
	Verifying Installation
	Summary

	Chapter 4: Logging
	Debug Log
	Debugging in Production

	Audit Log
	Audit Log Entry Example
	Concurrent Audit Log

	Remote Logging
	Conﬁguring Remote Logging
	Activating Remote Logging
	Troubleshooting Remote Logging

	File Upload Interception
	Storing Files
	Inspecting Files
	Integrating with ClamAV

	Advanced Logging Conﬁguration
	Increasing Logging from a Rule
	Dynamically Altering Logging Conﬁguration
	Removing Sensitive Data from Audit Logs
	Selective Audit Logging

	Summary

	Chapter 5: Rule Language Overview
	Anatomy of a Rule
	Variables
	Request Variables
	Server Variables
	Response Variables
	Miscellaneous Variables
	Parsing Flags
	Collections
	Time Variables

	Operators
	String Matching Operators
	Numerical Operators
	Validation Operators
	Miscellaneous Operators

	Actions
	Disruptive Actions
	Flow Actions
	Metadata Actions
	Variable Actions
	Logging Actions
	Special Actions
	Miscellaneous Actions

	Summary

	Chapter 6: Rule Language Tutorial
	Introducing Rules
	Working with Variables
	Combining Rules into Chains
	Operator Negation
	Variable Counting
	Using Actions
	Understanding Action Defaults
	Actions in Chained Rules
	Unconditional Rules

	Using Transformation Functions
	Blocking
	Changing Rule Flow
	Smarter Skipping
	If-Then-Else

	Controlling Logging
	Capturing Data
	Variable Manipulation
	Variable Expansion
	Recording Data in Alerts
	Adding Metadata
	Embedded vs. Reverse Proxy Mode
	Summary

	Chapter 7: Rule Conﬁguration
	Apache Conﬁguration Syntax
	Breaking Lines
	Directives and Parameters
	Spreading Conﬁguration Across Files
	Container Directives
	Conﬁguration Contexts
	Conﬁguration Merging

	Conﬁguration and Rule Inheritance
	Conﬁguration Inheritance
	Rule Inheritance
	Location-Speciﬁc Conﬁguration Restrictions
	SecDefaultAction Inheritance Anomaly

	Rule Manipulation
	Removing Rules at Conﬁgure Time
	Updating Rule Actions at Conﬁgure Time
	Updating Rule Targets at Conﬁgure Time
	Removing Rules at Runtime
	Updating Rule Targets at Runtime

	Conﬁguration Tips
	Summary

	Chapter 8: Persistent Storage
	Manipulating Collection Records
	Creating Records
	Application Namespaces
	Initializing Records
	Controlling Record Longevity
	Deleting Records
	Detecting Very Old Records

	Collection Variables
	Built-in Variables
	Variable Expiry
	Variable Value Depreciation

	Implementation Details
	Retrieving Records
	Storing a Collection
	Record Limits

	Applied Persistence
	Periodic Alerting
	Denial of Service Attack Detection
	Brute Force Attack Detection

	Session Management
	Initializing Sessions
	Blocking Sessions
	Forcing Session Regeneration
	Restricting Session Lifetime
	Detecting Session Hijacking

	User Management
	Detecting User Sign-In
	Detecting User Sign-Out

	Summary

	Chapter 9: Practical Rule Writing
	Whitelisting
	Whitelisting Theory
	Whitelisting Mechanics
	Granular Whitelisting
	Complete Whitelisting Example

	Virtual Patching
	Vulnerability versus Exploit Patching
	Failings of Exploit Detection
	Impedance Mismatch
	Preferred Virtual Patching Approach

	IP Address Reputation and Blacklisting
	IP Address Blocking
	Geolocation
	Real-Time Block Lists
	Local Reputation Management

	Integration with Other Apache Modules
	Conditional Logging
	Header Manipulation
	Securing Session Cookies

	Advanced Blocking
	Immediate Blocking
	Keeping Detection and Blocking Separate
	User-Friendly Blocking
	External Blocking
	Honeypot Diversion
	Delayed Blocking
	Score-Based Blocking

	Making the Most of Regular Expressions
	How ModSecurity Compiles Patterns
	Changing How Patterns Are Compiled
	Common Pattern Problems
	Regular Expression Denial of Service
	Resources

	Working with Rule Sets
	Deploying Rule Sets
	Dealing with False Positives
	Upgrading to New Releases

	Writing Rules for Distribution
	Resources for Rule Writers

	Summary

	Chapter 10: Performance
	Understanding Performance
	Top 10 Performance Rules

	Performance Tracking
	Performance Metrics
	Performance Logging
	Real-Time Performance Monitoring

	Load Testing
	Rule Benchmarking
	Preparation
	Test Data Selection
	Performance Baseline

	Optimizing Pattern Matching
	Rule per Keyword Approach
	Combined Regular Expression Pattern
	Optimized Regular Expression Pattern
	Parallel Pattern Matching
	Test Results

	Summary

	Chapter 11: Content Injection
	Writing Content Injection Rules
	Communicating Back to the Server
	Interrupting Page Rendering
	Using External JavaScript Code

	Communicating with Users
	Summary

	Chapter 12: Writing Rules in Lua
	Rule Language Integration
	Lua Rules Skeleton
	Accessing Variables
	Setting Variables
	Logging
	Lua Actions
	Summary

	Chapter 13: Handling XML
	XML Parsing
	DTD Validation
	XML Schema Validation
	XML Namespaces
	XPath Expressions
	XPath and Namespaces
	XML Inspection Framework
	Summary

	Chapter 14: Extending Rule Language
	Extension Template
	Adding a Transformation Function
	Adding an Operator
	Adding a Variable
	Adding a Request Body Processor
	Summary

	Part II: Reference Manual
	Chapter 15: Directives
	SecAction
	SecArgumentSeparator
	SecAuditEngine
	SecAuditLog
	SecAuditLog2
	SecAuditLogDirMode
	SecAuditLogFileMode
	SecAuditLogParts
	SecAuditLogRelevantStatus
	SecAuditLogStorageDir
	SecAuditLogType
	SecCacheTransformations
	SecChrootDir
	SecCollectionTimeout
	SecComponentSignature
	SecContentInjection
	SecCookieFormat
	SecDataDir
	SecDebugLog
	SecDebugLogLevel
	SecDefaultAction
	SecDisableBackendCompression
	SecGeoLookupDb
	SecGsbLookupDb
	SecGuardianLog
	SecInterceptOnError
	SecMarker
	SecPcreMatchLimit
	SecPcreMatchLimitRecursion
	SecPdfProtect
	SecPdfProtectMethod
	SecPdfProtectSecret
	SecPdfProtectTimeout
	SecPdfProtectTokenName
	SecReadStateLimit
	SecRequestBodyAccess
	SecRequestBodyLimit
	SecRequestBodyLimitAction
	SecRequestBodyNoFilesLimit
	SecRequestBodyInMemoryLimit
	SecResponseBodyLimit
	SecResponseBodyLimitAction
	SecResponseBodyMimeType
	SecResponseBodyMimeTypesClear
	SecResponseBodyAccess
	SecRule
	SecRuleInheritance
	SecRuleEngine
	SecRuleRemoveById
	SecRuleRemoveByMsg
	SecRuleRemoveByTag
	SecRuleScript
	SecRuleUpdateActionById
	SecRuleUpdateTargetById
	SecServerSignature
	SecStreamInBodyInspection
	SecStreamOutBodyInspection
	SecTmpDir
	SecUploadDir
	SecUploadFileLimit
	SecUploadFileMode
	SecUploadKeepFiles
	SecWebAppId
	SecUnicodeCodePage
	SecUnicodeMapFile
	SecWriteStateLimit

	Chapter 16: Variables
	ARGS
	ARGS_COMBINED_SIZE
	ARGS_GET
	ARGS_GET_NAMES
	ARGS_NAMES
	ARGS_POST
	ARGS_POST_NAMES
	AUTH_TYPE
	DURATION
	ENV
	FILES
	FILES_COMBINED_SIZE
	FILES_NAMES
	FILES_SIZES
	FILES_TMPNAMES
	GEO
	HIGHEST_SEVERITY
	INBOUND_DATA_ERROR
	MATCHED_VAR
	MATCHED_VAR_NAME
	MATCHED_VARS
	MATCHED_VARS_NAMES
	MODSEC_BUILD
	MULTIPART_CRLF_LF_LINES
	MULTIPART_STRICT_ERROR
	MULTIPART_UNMATCHED_BOUNDARY
	OUTBOUND_DATA_ERROR
	PATH_INFO
	PERF_ALL
	PERF_COMBINED
	PERF_GC
	PERF_LOGGING
	PERF_PHASE1
	PERF_PHASE2
	PERF_PHASE3
	PERF_PHASE4
	PERF_PHASE5
	PERF_SREAD
	PERF_SWRITE
	QUERY_STRING
	REMOTE_ADDR
	REMOTE_HOST
	REMOTE_PORT
	REMOTE_USER
	REQBODY_ERROR
	REQBODY_ERROR_MSG
	REQBODY_PROCESSOR
	REQBODY_PROCESSOR_ERROR
	REQBODY_PROCESSOR_ERROR_MSG
	REQUEST_BASENAME
	REQUEST_BODY
	REQUEST_BODY_LENGTH
	REQUEST_COOKIES
	REQUEST_COOKIES_NAMES
	REQUEST_FILENAME
	REQUEST_HEADERS
	REQUEST_HEADERS_NAMES
	REQUEST_LINE
	REQUEST_METHOD
	REQUEST_PROTOCOL
	REQUEST_URI
	REQUEST_URI_RAW
	RESPONSE_BODY
	RESPONSE_CONTENT_LENGTH
	RESPONSE_CONTENT_TYPE
	RESPONSE_HEADERS
	RESPONSE_HEADERS_NAMES
	RESPONSE_PROTOCOL
	RESPONSE_STATUS
	RULE
	SCRIPT_BASENAME
	SCRIPT_FILENAME
	SCRIPT_GID
	SCRIPT_GROUPNAME
	SCRIPT_MODE
	SCRIPT_UID
	SCRIPT_USERNAME
	SERVER_ADDR
	SERVER_NAME
	SERVER_PORT
	SESSION
	SESSIONID
	STREAM_INPUT_BODY
	STREAM_OUTPUT_BODY
	TIME
	TIME_DAY
	TIME_EPOCH
	TIME_HOUR
	TIME_MIN
	TIME_MON
	TIME_SEC
	TIME_WDAY
	TIME_YEAR
	TX
	UNIQUE_ID
	URLENCODED_ERROR
	USERID
	WEBAPPID
	WEBSERVER_ERROR_LOG
	XML

	Chapter 17: Transformation Functions
	base64Decode
	base64DecodeExt
	base64Encode
	cmdLine
	compressWhitespace
	cssDecode
	decodeBase64Ext
	escapeSeqDecode
	hexDecode
	hexEncode
	htmlEntityDecode
	jsDecode
	length
	lowercase
	md5
	none
	normalisePath
	normalisePathWin
	normalizePath
	normalizePathWin
	parityEven7bit
	parityOdd7bit
	parityZero7bit
	removeComments
	removeCommentsChar
	removeNulls
	removeWhitespace
	replaceComments
	replaceNulls
	urlDecode
	urlDecodeUni
	urlEncode
	sha1
	sqlHexDecode
	trimLeft
	trimRight
	trim

	Chapter 18: Actions
	allow
	append
	auditlog
	block
	capture
	chain
	ctl
	deny
	deprecatevar
	drop
	exec
	expirevar
	id
	initcol
	log
	logdata
	msg
	multiMatch
	noauditlog
	nolog
	pass
	pause
	phase
	prepend
	proxy
	redirect
	rev
	sanitiseArg
	sanitiseMatched
	sanitiseMatchedBytes
	sanitiseRequestHeader
	sanitiseResponseHeader
	sanitizeArg
	sanitizeMatched
	sanitizeMatchedBytes
	sanitizeRequestHeader
	sanitizeResponseHeader
	severity
	setuid
	setsid
	setenv
	setvar
	skip
	skipAfter
	status
	t
	tag
	xmlns

	Chapter 19: Operators
	beginsWith
	contains
	endsWith
	eq
	ge
	geoLookup
	gsbLookup
	gt
	inspectFile
	ipMatch
	le
	lt
	pm
	pmf
	pmFromFile
	rbl
	rsub
	rx
	streq
	validateByteRange
	validateDTD
	validateSchema
	validateUrlEncoding
	validateUtf8Encoding
	verifyCC
	verifyCPF
	verifySSN
	within

	Chapter 20: Data Formats
	Alerts
	Alert Action Description
	Alert Justiﬁcation Description
	Metadata
	Escaping
	Alerts in the Apache Error Log
	Alerts in Audit Logs

	Audit Log
	Parts
	Audit Log Header (A)
	Request Headers (B)
	Request Body (C)
	Attempted Response Headers (D)
	Attempted Response Body (E)
	Response Headers (F)
	Response Body (G)
	Audit Log Trailer (H)
	Action
	Apache-Error
	Message
	Producer
	Response-Body-Transformed
	Sanitised-Args
	Sanitised-Request-Headers
	Sanitised-Response-Headers
	Server
	Stopwatch
	Stopwatch2
	WebApp-Info

	Reduced Multipart Request Body (I)
	Multipart Files Information (J)
	Matched Rules (K)
	Audit Log Footer (Z)

	Storage Formats
	Serial Audit Log Format
	Concurrent Audit Log Format

	Remote Logging Protocol
	Request Headers Information

	Index

